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In the current study we use a multiscale computational methodology to develop an 

internal state variable model that captures frictional effects during the compaction of 

particulate materials. Molecular dynamics simulations using EAM potentials were 

performed to model the contact behavior of spherical nickel nanoparticles.  Simulation 

results for models consisting of various particle sizes and contact angles were compared 

to quantify the length scale effects of friction. The influence of friction on the 

microstructure was shown from the nucleation of dislocations near the interface region 

during sliding. By using an internal state variable theory to couple the microstructural 

changes due to friction observed at the nanoscale to a macroscopic rate-independent 

plasticity model, a multiscale friction model that captures the deformation behavior due 

to dislocations and interparticle friction was developed. The internal state variable 

friction equation is a function of the volume-per-surface-area parameter and can 

adequately represent all length scales of importance from the nanoscale to the microscale.  
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The kinematics was modified by including a frictional component in the 

multiplicative decomposition of the deformation gradient in order to account for the 

frictional surface effects due to sliding, as well as frictional hardening/softening within 

the particles. The friction formulation was extended to the macroscale continuum model 

by determining the rate of change of the friction angle of the powder aggregate based on 

the evolution of the friction internal state variable. The constitutive model was coupled 

with the Bammann-Chiesa-Johnson (BCJ) rate-dependent plasticity model to capture the 

deformation behavior of the particles. 

Key words: multiscale modeling, molecular dynamics, friction, granular materials, 
particle deformation 



www.manaraa.com

 

 
 

 

 

DEDICATION 

I would like to dedicate this research to my parents, Ozzie H. Williams and the 

late Harold E. Williams; my husband, Dwayne; my children Joshua, Jordan, and Jasmine; 

and my last, but certainly not least, my sister, Tracey. 

ii 



www.manaraa.com

 

 
 

 

  

 

 

ACKNOWLEDGEMENTS 

I would like to take this opportunity to express my appreciation and gratitude to 

the people who have helped and encouraged me in completing this dissertation. First, I 

would like to sincerely thank my advisor Dr. Mark F. Horstemeyer for his invaluable 

guidance and support and insistence on excellence throughout this process.  His insight 

and guidance was invaluable in my accomplishing this work.  I would also like to express 

my appreciation to my committee members Dr. Philip M. Gullett, Dr. Youssef Hammi, 

Dr. Doug Bammann, and Dr. Keith Walters for their patience in reading this dissertation 

and for their valuable comments and feedback. 

Of my peers, I would particularly like to thank Bohumir Jelinek for his help and 

many useful suggestions in using the Molecular Dynamics code WARP.  

Also I would like to express my sincere appreciation and thanks to my husband, 

Dwayne, for continually encouraging me during this process. I especially want to thank 

my children, Jasmine, Jordan, and Joshua, for being as understandable as possible about 

my being at work many late nights and weekends.  Finally, I would like to thank my 

mother, Ozzie, my sister, Tracey, and all my friends and extended family for their support 

and love. Pursuing a doctorate degree in mechanical engineering was much more 

difficult that I had anticipated, and it was only my family’s unwavering support and 

continuous encouragement that helped me through the difficult times. 

iii 



www.manaraa.com

 

 

 

I would also like to acknowledge the financial support for this research provided 

by the National Science Foundation Graduate Research Assistantship.  I also express my 

gratitude to the James Worth Bagley College of Engineering at Mississippi State 

University and the Center for Advanced Vehicular Systems for supporting this research, 

as well as funding provided by U.S. Automotive Materials Partnership (AMD410) 

contract no. FC-26-02OR22910. 

Most importantly I would like to thank God for giving me wisdom and strength 

when I needed it most but especially for giving me hope and the perseverance to continue 

on when I felt like giving up. 

iv 



www.manaraa.com

 

 

 

 

 

 

 

  

   
   
   
   

  

   
   
    
   

 
 

   
   
   

   
   
   

   
 

TABLE OF CONTENTS 

DEDICATION.................................................................................................................... ii 

ACKNOWLEDGEMENTS............................................................................................... iii 

LIST OF TABLES............................................................................................................ vii 

LIST OF FIGURES ......................................................................................................... viii 

LIST OF SYMBOLS, ABBREVIATIONS, AND SPECIAL NOMENCLATURE ....... xiii 

CHAPTER 

I. INTRODUCTION .................................................................................................1 

1.1 Motivation....................................................................................................1 
1.2 Friction and the Mechanisms of Friction .....................................................3 
1.3 Research Objective ......................................................................................8 
1.4 Dissertation Structure...................................................................................8 

II. OVERVIEW OF THEORIES AND APPROACHES .........................................10 

2.1 Overview of Multiscale Material Modeling ..............................................10 
2.2 Overview of Molecular Dynamic (MD) Simulations ................................12 
2.3 Overview of Particulate Material Constitutive Models .............................14 
2.4 Overview of BCJ Plasticity Model ............................................................17 

III. MULTISCALE MODELING OF FRICTION USING 
MOLECULAR DYNAMICS ....................................................................20 

3.1 Introduction................................................................................................20 
3.2 Simulation Method and Setup ....................................................................25 
3.3 Results and Discussion ..............................................................................30 

3.3.1 Stress-Strain Response.................................................................. 30 
3.3.2 Dislocation Structures and Interfacial Slip ................................... 44 
3.3.3 Constitutive Model for Elastic-Plastic behavior ........................... 53 

3.4 Scale-Dependent Friction Model ...............................................................61 
3.5 MD Results Comparison with Experimental Data.....................................70 

v 



www.manaraa.com

 

 
   

 

 

   
   
   
   

   
   
   
   

   
   
   

  

   
    

   
   
   
   

 

 

  

  

  

3.6 Summary of Chapter 3 ...............................................................................72 

IV. HIERARCHICAL MULTISCALE FRICTION MODEL USING 
MOLECULAR DYNAMICS SIMULATIONS AND 
INTERNAL STATE VARIABLE PLASTICITY THEORY ....................74 

4.1 Introduction................................................................................................74 
4.2 Kinematics .................................................................................................77 
4.3 Thermodynamics........................................................................................83 
4.4 Kinetics ......................................................................................................85 

4.4.1 Isotropic Hardening ...................................................................... 87 
4.4.2 Kinematic Hardening .................................................................... 88 
4.4.3 Damage ......................................................................................... 88 
4.4.4 Frictional Hardening/Softening .................................................... 90 

4.5 Plasticity and Slip ......................................................................................95 
4.6 Modified Drucker-Prager/ Cap Plasticity Model.....................................102 
4.7 Summary of Chapter 4 .............................................................................106 

V. CONCLUSIONS AND FUTURE WORK ........................................................108 

5.1 Conclusions..............................................................................................108 
5.2 Future Work .............................................................................................109 

5.2.1 Friction Model Implementation .................................................. 109 
5.2.2 Friction Model Correlation and Validation with Nickel ............. 109 
5.2.3 Extend MD Simulation Study to Include Other Materials.......... 109 
5.2.4 Energy Dissipation...................................................................... 109 

REFERENCES ................................................................................................................111 

APPENDIX 

A. SUMMARY OF MODEL CONFIGURATIONS .............................................119 

B. MD SIMULATION SAMPLE INPUT FILE ....................................................121 

vi 



www.manaraa.com

 

 
 

 
 

 

 

 

LIST OF TABLES 

Table Page 

3.1 Material properties from the MD simulations. ........................................................35 

3.2 Friction model parameters for the MD simulation results. ......................................65 

3.3 Coefficient of friction saturation values from the MD simulations. ........................69 

vii 



www.manaraa.com

 

 
 
 

 
 

 

  
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

LIST OF FIGURES 

Figure Page 

1.1 Schematic of powder particle compaction .................................................................2

 1.2 Multiparticle finite element model results of the effect of the coefficient of 
friction µ on the density distribution of hydrostatically compacted 
particles. [Reprinted from Procopio and Zavaliangos, 2005] ............................3

 1.3 Block diagram of friction mechanisms and the generation and propagation 
of dislocations during plastic deformation. [Modified from Bhushan 
and Nosonovsky, 2003] .......................................................................................6

 1.4 Six stages in the frictional force vs. sliding distance relation [Reprinted 
from Suh and Sin, 1981]. .....................................................................................6

 1.5 Real area of contact only takes place at the tops of the asperities during 
sliding. .................................................................................................................7

 1.6 Molecular statics simulation results for Argon indicating a stick-slip effect 
characterized by a sawtooth pattern for the friction coefficient vs. 
displacement.  [Reprinted from Kim and Suh, 1994]. .........................................8

 2.1 The modeling methods at different length scale and time scale ..............................11

 2.2 (a) View of Mohr-Coulomb failure surface in 3D space of principal stresses 
(b) View of Drucker-Prager yield surface in 3D space of principal 
stresses, (c) and a comparison of Drucker-Prager and Mohr-Coulomb 
yield surfaces in 2D principal stress space. 
[http://en.wikipedia.org/wiki/Yield_surface] ....................................................16

 2.3 Shear failure and cap yield xurfaces in p-q stress space for a particulate 
model. ................................................................................................................17

 2.4 (a) Microstructural features, such as voids and dislocations, in particle 
model replaced by (b) a continuum element that is described by internal 
state variables, such as κ, α, and φ . ..................................................................19 

viii 

http://en.wikipedia.org/wiki/Yield_surface


www.manaraa.com

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 3.1 Schematic of two particle model showing active nickel atoms as white 
circles and fixed boundary atoms as grey. The arrows indicate the 
loading direction. The model setup includes contact angles of γ = 0°, 
30° or 60°, diameter D=3.52, 7.04, 10 or 14.08 nm, and velocity of 0.22 
nm/ps up to 20% strain. The orientation of the crystal is shown on the 
right. ..................................................................................................................26

 3.2 Atomic diagrams for the Ni nanoparticles with atoms in their original fcc 
lattice positions at 60 degree contact angle. ......................................................30

 3.3 Effect of the particle size and contact angle on the initial stresses in the 
nanoscale model after 10 ps of thermal equilibrium. ........................................32

 3.4 Average shear-stress strain response for 3.5 nm particles with <100> 
crystal lattice orientations and a 30 deg contact angle. .....................................36

 3.5 Average shear-stress strain response for 3.5 nm particles with <100> crystal 
lattice orientations and a 60 deg contact angle. .................................................37

 3.6 Average shear-stress strain response for 7 nm particles with <100> crystal 
lattice orientations and a 30 deg contact angle. .................................................38

 3.7 Average shear-stress strain response for 7 nm particles with <100> crystal 
lattice orientations and a 60 deg contact angle. .................................................39

 3.8 Average shear-stress strain response for 10 nm particles with <100> crystal 
lattice orientations and a 30 deg contact angle. .................................................40

 3.9 Average shear-stress strain response for 10 nm particles with <100> crystal 
lattice orientations and a 60 deg contact angle. .................................................41

 3.10 Average shear-stress strain response for 14 nm particles with <100> 
crystal lattice orientations and a 30 deg contact angle. .....................................42

 3.11 Average shear-stress strain response for 14 nm particles with <100> 
crystal lattice orientations and a 60 deg contact angle. .....................................43

 3.12 Log-log shear yield stress normalized by the shear modulus versus 
volume-per-surface area for nickel, gold, and copper for various 
experiments and MD simulations. .....................................................................44 

ix 



www.manaraa.com

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 

 3.13 Evolution of dislocation structures and plastic deformation from MD 
Simulations for 3.52 nm particle model with a 60 degree contact angle.  
Dislocation nucleation and glide along discrete slip planes through the 
centers and along the interface of two contacting particles is 
demonstrated along with formation of complex dislocation structures 
attributing to plastic deformation. .....................................................................48

 3.14 Evolution of dislocation structures and plastic deformation between 3-5% 
strain from MD Simulations for 14 nm particle model with a 60 degree 
contact angle. Dislocation nucleation and glide along discrete slip 
planes through the centers and along the interface of two contacting 
particles is demonstrated along with formation of complex dislocation 
structures attributing to plastic deformation. .....................................................49

 3.15 Evolution of dislocation structures and plastic deformation between 5-12% 
strain from MD Simulations for 14 nm particle model with a 60 degree 
contact angle. Dislocation nucleation and glide along discrete slip 
planes through the centers and along the interface of two contacting 
particles is demonstrated along with formation of complex dislocation 
structures attributing to plastic deformation. .....................................................50

 3.16 Evolution of dislocation structures and plastic deformation between 12-
15% strain from MD Simulations for 14 nm particle model with a 60 
degree contact angle. Dislocation nucleation and glide along discrete 
slip planes through the centers and along the interface of two contacting 
particles is demonstrated along with formation of complex dislocation 
structures attributing to plastic deformation. .....................................................51

 3.17 Evolution of dislocation structures and plastic deformation between 16-
18% strain from MD Simulations for 14 nm particle model with a 60 
degree contact angle. An increase in  dislocation structures is evident 
with increased strain. .........................................................................................52

 3.18 Snapshots from MD simulation for 3.52 nm particles with 60 degree 
contact angle demonstrating microslip by one Burgers vector along the 
periphery of the interface. .................................................................................53

 3.19 Friction force is proportional to the tangential relative motion of the 
particle ut with reference to the relative tangential motion at the contact 
interface. ............................................................................................................56

 3.20 Comparison of tangential force versus tangential displacement of the 
particle centers and tangential displacement of the contact interface 
from the MD simulations for (a) 3 nm dia. particle model and for (b) 
7nm dia. particle model results. .........................................................................59 

x 



www.manaraa.com

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

  
 

 3.21 Calculated normal load [Storåkers et al., 1997] versus (a) measured 
contact area and (b) versus normal indentation (MD EAM simulations) 
for various particle sizes and contact angles. ....................................................60

 3.22 Measured normal indentation vs. measured contact radius from MD EAM 
simulations for various particle sizes and contact angles. .................................61

 3.23 Friction force versus measured contact radius for various particle size and 
contact angles. ...................................................................................................62

 3.24 EAM MD simulation results for tangential force vs. normal force for a 3.5 
nm spherical particles. .......................................................................................63

 3.25 EAM MD simulation results for tangential force vs. normal force for a 7.0 
nm spherical particles. .......................................................................................64

 3.26 EAM MD simulation results for tangential force vs. normal force for a 
10.0 nm spherical particles. ...............................................................................64

 3.27 EAM MD simulation results for tangential force vs. normal force for a 
14.0 nm spherical particles. ...............................................................................65

 3.28 EAM MD simulation results for tangential force vs. normal force for a 30 
degree contact angle. .........................................................................................66

 3.29 EAM MD simulation results for tangential force vs. normal force for a 60 
degree contact angle. .........................................................................................66

 3.30 MD simulation results for the evolution of the coefficient of friction for a 
30 degree contact angle between the spherical particles. ..................................68

 3.31 Correlated friction evolution equation from MD simulation data for 60 
degree contact angle between the spherical particles. .......................................68

 3.32 Friction evolution model for 60 degree contact angle between two 
spherical particles applied to particles in the micrometer range. ......................70

 3.33 Comparison of saturated coefficient of friction between the MD 
simulation and the experimental results for Ni grain sizes of 8, 22 and 
61 μm. ................................................................................................................71

 3.34 Comparison of saturated coefficient of friction values between the model 
prediction and experimental and MD simulation results based on 
volume per surface area.....................................................................................72 

xi 



www.manaraa.com

 

  
 

 
 

 
 

 
 

 
 

 
 

  
 

 
 

 4.1 Multiplicative decomposition of the deformation gradient. ....................................78

 4.2 MD Simulation results of normal contact pressure versus effective plastic 
strain. .................................................................................................................94

 4.3 Evolution of frictional softening/hardening parameter with length scale 
dependence. .......................................................................................................95

 4.4 (a) The rate dependent yield surface for plastic deformation due to 
dislocations and damage, and (b) slip surface for plastic deformations 
due to friction. ...................................................................................................98

 4.5 Micromechanical finite element model setup with particles defined with a 
surface region for capturing the frictional effects in the model and an 
interior region for plastic deformations. ..........................................................102

 4.6 Evolution of the failure and cap yield surfaces of the Modified 
Drucker/Prager Cap Model. ............................................................................103

 4.7 Representation of the double yield surface for dense powder aggregate...............105

 4.8 Experimental results for interparticle friction angle versus green density for 
FC-0205 and 205Q steel materials. .................................................................105 

xii 



www.manaraa.com

 

 
 
 

 

 
 

  

 

 
 

 
 

  
    
    

 
  

    
  

   
    

 
 

 
  
 
  
  
    
   
 
   
   
  
  
 

LIST OF SYMBOLS, ABBREVIATIONS, AND SPECIAL NOMENCLATURE 

Abbreviations 

MD Molecular Dynamics 
CNA Common Neighbor Analysis 
EAM Embedded Atom Method 
BCJ Bammann-Chiesa-Johnson 
PM Powder Metal 

Nomenclature 

Molecular Dynamics 
E   total atomic energy 
F   local electron density of atoms 
R separation distance between atoms 
ρ electron density 
β atomic stress tensor 
f force vector between atoms 
r position vector between atoms 
Ω atomic volume 
N* number of nearest neighbor atoms 
σ continuum-like atomic stress tensor 
γ interparticle contact angle 

ISV Friction Model 
φ   interparticle friction angle 
εf   internal frictional strain 
εss   strains due to statistically stored dislocations 
φ   damage 
V   volume 
υ velocity 
μ   coefficient of friction 
f   fractional density 
κ isotropic hardening parameter 
α kinematic hardening parameter 
τ   interface traction 
τf   friction stress 
τt   tangential traction 

xiii 



www.manaraa.com

 

 
 
   
 
 

 
 

 
 
 
  
  
    
 
 
 
 
 
  

 
 

 

τn   normal traction 
τY   shear yield strength 
Fn      normal load 
Ft   tangential load 
ut   displacement at the interface 
F Deformation gradient 
D Rate of deformation  
K   Bulk modulus 
G   Shear modulus 
b   Burger’s vector 
u   Internal energy per unit mass 
ψ   Helmholz free energy 
ρ Density 
θ   Temperature 
q   Heat flux vector 
s   specific entropy 
r   internal heat supply 
Ar   real contact area 
Aa   apparent contact area 
h           normal indentation 
a   contact radius 

xiv 



www.manaraa.com

 

 

 

  

 

 

 

CHAPTER I 

INTRODUCTION 

1.1 Motivation 

Multiscale modeling has become a new wave of research that has allowed 

simulation-based design to have greater impact as higher fidelity physics is implemented. 

By including information from the lower length scales on the mechanical response of 

materials, more accurate predictions of material behavior can be achieved.  Over the past 

ten years a great deal of effort has been directed toward accurately modeling the powder 

metallurgy (PM) compaction process. During compaction, powder is added to a die and 

compacted at high pressures to form a solid or green part.  A schematic of closed die 

compaction, which is utilized in the current research and consists of a fixed die wall with 

loading applied through upper and lower punches, is provided in Figure 1.1.  Due to the 

particulate nature of powders, densification of the compacted powder proceeds through 

plastic deformation at the particle contact and by the rearrangement of particles. 

Interparticle friction, combined with the friction between powder particles and the tooling 

surfaces, hinders the uniform consolidation of the metal powder leading to density 

variations in the compacted part. Additionally, high interparticle friction requires the use 

of higher compaction pressures to achieve a dense part.  While powder lubricant is 

typically added to reduce interparticle friction, understanding dry friction effects on 

1 



www.manaraa.com

 

 

 

 

  
 

  

 

 

 

 

powder deformation is an important step prior to expanding modeling capabilities to 

accurately predict the behavior of lubricated metal powders. 

Upper punch 
die 

Lower punch 

Powder 
particles 

Figure 1.1 Schematic of powder particle compaction. 

While several researchers have worked on modeling die compaction, most of the 

models are phenomenological material models based on density dependent variables 

[Coube and Riedel, 2000]. Attempts at developing micromechanical models in which the 

particle behavior is derived from lower length scale particle interactions have been made 

by a few researchers [Fleck et. al, 1992; Riedel et al., 1993/1994; Fleck, 1995; Storakers 

et al., 1999; Gu et al, 2001]. As shown in Figure 1.2, micromechanical models provide 

useful information regarding contact deformation; however, these models are limited to 

only a few hundred particles. Multiscale modeling for friction, particularly for powder 

metal materials, has been limited.  Most previous work on developing continuum models 

that include evolution equations for friction have been done for geoscience materials such 

2 
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as soils and sand [Anand and Gu, 2000;  Hattamleh et al, 2007].  Using an internal state 

variable theory we can replace the particle behavior with a macroscale continuum model 

that captures the microstructural changes during compaction of the powder particles.   

D=Relative Density 

Sz = Standard Deviation 

Figure 1.2 Multiparticle finite element model results of the effect of the coefficient of 
friction µ on the density distribution of hydrostatically compacted particles.  
[Reprinted from Procopio and Zavaliangos, 2005] 

1.2 Friction and the Mechanisms of Friction 

In general, friction refers to the resistance of two loaded contacting surfaces to 

slide. The frictional force Ff  is the tangential force resisting the relative motion of two 

surfaces, which are pressed against each other with a normal force Fn. The constant of 

proportionality between Ff and Fn is referred to as the coefficient of friction μ, written as 

Ff = μFn (1.1) 

and is dependent on the material and on whether the bodies are at rest (in a state of 

sticking) μs or in motion (state of sliding) μk. The first published studies on friction were 

3 
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by Amontons [1699] and Coulomb [1781], who are credited with the development of the 

classical friction law given in Eq. (1.1). 

In order to successfully model interparticle frictional effects it is necessary to 

understand the mechanisms of friction.  Although there are many theories concerning the 

mechanisms of friction [Anand, 1993; Suh and Sin, 1981],  as shown in the block 

diagram in Figure 1.3, the major contributing factors to the friction force are the 

combined effects of adhesion, elastic-plastic asperity deformation, and plowing by wear 

particles. Asperities are the sharp or rugged points on a macroscopically flat surface and 

are the origins of surface friction and wear.  The relative contribution of these various 

mechanisms show in Figure 1.3 depends on the condition of the sliding interface. From 

experiments, Suh and Sin [1981] observed that the coefficient of friction is a function of 

the sliding distance between contacting surfaces and could be divided into six primary 

stages of frictional phenomena. As shown in Figure 1.4, the stages include initial plowing 

of the surface by asperities, adhesion, plastic deformation, removal of asperities, and a 

steady state condition. Therefore, the friction force changes significantly during sliding 

before steady state frictional behavior is reached, suggesting  that frictional behavior 

depends not only on adhesion but also on the history of sliding. The time dependent 

nature of the coefficient of friction is an area where little research has been focused.   

Variations of the friction coefficient under extremely light loads from those at 

higher loads suggest that the mechanisms of friction may depend on the scale of the 

interaction. There is interest to understand frictional behavior at the micro- and 

nanoscale in order to gain additional insight into the fundamental causes of friction. As 

4 
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shown in Figure 1.5, real surfaces are usually not smooth, therefore contact only takes 

place at the tops of the asperities during sliding indicating that the real area of contact is 

smaller than the apparent area of contact.   

In 1958, Bowden and Tabor presented an adhesion model for friction at the 

micrometer scale. This model differs from the original Amontons-Coulomb model in that 

it assumes the frictional force is proportional to both the real area of contact Ar, due to 

asperities, and shear 

strength at the interface τf, such that 

F = τ A . (1.2)f f r 

In this formulation, the contact area is dependent on the applied normal load, the particle 

radius, and the elastic properties of the material.  The shear strength is defined as the 

shear force per unit area required to cause sliding along the interface. 

5 
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Figure 1.3    Block diagram of friction mechanisms  and the generation and propagation of 
dislocations during plastic deformation. [Modified from Bhushan and 
Nosonovsky, 2003] 

Figure 1.4 Six stages in the frictional force vs. sliding distance relation [Reprinted from 
Suh and Sin, 1981]. 

Experimental studies performed by Tambe and Bhushan [2005] on the 

mechanisms of friction explain the differences in friction measured experimentally at the 

different size scales. They identified the primary sources of nanoscale friction force as 
6 
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interfacial adhesion between contacting asperities, the energy required for deformation of 

contacting asperities during relative motion, and stick-slip.  The stick-slip phenomenon 

was first presented by Tomlinson [1929] and refers to alternating adhesion and sliding at 

the contact.  The stick-slip effect is typically characterized by a sawtooth pattern in 

atomic scale models or experiments, as demonstrated in Figure 1.6 by the molecular 

statics simulation results of Kim and Suh [1994] for argon. 

Figure 1.5 Real area of contact only takes place at the tops of the asperities during 
sliding. 
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Figure 1.6 Molecular statics simulation results for Argon indicating a stick-slip effect 
characterized by a sawtooth pattern for the friction coefficient vs. 
displacement.  [Reprinted from Kim and Suh, 1994]. 

1.3 Research Objective 

The purpose of this research is to use a multiscale computational methodology to 

develop an internal state variable (ISV) model that captures frictional effects during the 

compaction of particulate materials.  By using atomistic simulations we adequately 

capture the material behavior and effects of friction at the nanoscale. The main 

contribution of this research will be the addition of a friction constitutive relation to the 

Bammann-Chiesa-Johnson (BCJ) plasticity model [Bammann, 1990; Bammann et al., 

1993] that takes into account the effect of the evolution of the hardening at the contact 

surface due to friction during deformation.   

1.4 Dissertation Structure 

Chapter I was a general introduction to the dissertation and provided the 

motivation behind this work and a review on the current state of multiscale friction 

modeling and the mechanisms of friction. Chapter II presents an overview of the general 
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concept of multiscale material modeling which is followed by a brief background on the 

MD simulation, the BCJ plasticity model, and constitutive models for particulate 

materials.  Chapter III presents results from a two particle friction study using MD 

simulations and introduces a scale dependent friction relation to be included in the 

constitutive model for the ISV formulation.  Chapter IV presents the development of a 

hierarchical multiscale friction model using the length scale relation from the MD 

simulations in an ISV framework to describe the evolution of friction hardening or 

softening in terms of the particle deformation.  The last part of Chapter IV extends the 

interface friction model to represent the microstructural changes due to the particle 

interactions in a macroscale continuum framework.  Chapter V presents conclusions and 

recommendations for future work. 
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CHAPTER II 

OVERVIEW OF THEORIES AND APPROACHES 

2.1 Overview of Multiscale Material Modeling 

Multiscale material modeling involves performing simulations across several 

characteristic length and time scales.  The length scales can range from the atomic level 

(10-9 m) level to the macro level (10-4~10 -2 m) with time scales varying from 

femtoseconds (10-15) to quasi-static regimes.  As shown in Figure 2.1, different modeling 

methods are used to perform simulations across the different scales. 

Several constitutive model methodologies are used in modeling the powder 

metallurgy processes. These methods may be classified on the basis of length scales. At 

the nanoscale Molecular Dynamics simulations are used to study atomic interactions and 

can simulate up to 109 atoms and a length scale of 100 nm.  Dislocation Dynamics 

methods are used to study dislocation motion, interactions and dislocation structure 

formation.  At the micron scale, discrete element models analyze multi-particle behavior 

using numerical simulation of individual particles based on prescribed contact conditions.  

At the macroscale, the effects of defects and microstructures on plastic deformation and 

fracture using only a few representative internal state variables are incorporated into the 

constitutive equations for continuum models. 

10 
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Figure 2.1 The modeling methods at different length scale and time scale. 

In the current formulation, we use a hierarchical approach to link information 

from one scale to another.  In the hierarchical approach, large-scale models use coarse-

grained representations with information obtained from more detailed, small-scale 

models. In the hierarchical methods, simulations are run independent of the others, and 

the appropriate higher length scale effects from the lower length scale causes must be 

determined. The idea is to reduce the degrees of freedom for the higher scale analyses 

because too many degrees of freedom make the solution of a structural scale boundary 

value problem almost impossible.   
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2.2 Overview of Molecular Dynamic (MD) Simulations 

The Molecular Dynamics simulation methods have been used to study dynamic 

systems of particles since the 1960s [Gullett et al., 2004].  In MD simulations, 

interatomic forces that move the atoms and reflect the quantum-mechanical chemical 

bonding are calculated. These forces are most often obtained from interatomic potentials 

based on a metal’s lattice parameter, cohesive and vacancy formation energies, and 

elastic constants. Molecular dynamics codes perform the energy, force, and stress 

calculations based on the chosen potential.  In the current study, we used the MD 

simulation code WARP [Plimpton, 1995].  In this MD simulation code, the equations of 

motion are derived based on Newton’s Second Law of Motion for an N atom system 

α αFi = mα &x&i  i=1,2,3 and α=1,2…N (2.1) 

where Fi 
α denotes the force in the ith direction acting on atom α; mα denotes the atom’s 

mass and xi 
α denotes the ith component of the atom’s position. The force Fi 

α can also be 

described as the derivative of the total potential energy E with respect to the position of 

the atom α, 

α ∂EFi = − α (2.2)
∂xi 

The notion of embedding energy was first proposed by Friedel [1952] and further 

developed by Stott and Zaremba [1980].  Daw and Baskes [1984] proposed a numerical 

method for calculating atomic energies for metals. Daw et al. [1993] summarized many 

applications of EAM. The EAM potentials are based on a semi-empirical method for 

which the total energy is equal to the embedding energy F, which is a function of the 
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electron density ρ due to neighboring atoms, plus the addition of the potential energy 

term φ, 

i i ij 1 ij ijE = ∑ F 
⎛
⎜⎜∑ ρ (r )

⎞
⎟⎟ + 2 ∑ϕ (r ) , (2.3) 

i ⎝ i≠ j ⎠ ij 

where i refers to the atom in question and  j refers to the neighboring atoms.  The EAM 

potential used in this study for nickel is described in Foiles et al. [1986]. The EAM 

potential describes the bonding of an atom in terms of the local electronic density and 

incorporates electrostatic and repulsive interactions between atoms.  The force vector 

between atoms i and j is defined as 

k ∂Efij = k , (2.4)
∂rij 

where rij
k is a position vector between atoms.  The  number of superscripts denote the 

rank of the tensor and the subscripts denote the atom counting system.  From the atomic 

forces, the stress tensor at atom i is calculated as 

N 
km 1 k mβ = ∑ f ij rij , (2.5)i Ω i j≠i 

where N is the number of nearest neighbor atoms, and Ωi is the atomic volume. 

Because MD simulations output information such as stresses and forces is in 

terms of each atom, estimations are often made for bulk stress calculations for 

comparison with macroscale mechanical properties. A continuum-like stress tensor is 

defined for the bulk specimen as, 

*N 
km 1 kmσ = * ∑β i . (2.6)

N i=1 
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Another common output parameter is the centrosymmetry parameter. The 

centrosymmetry parameter of a given atom provides a measure of the level of disturbance 

of that atom’s environment from the symmetric crystal structure. The formula for the 

parameter for an FCC crystal is [Kelchner et al., 1998] 

26 r rC FCC , (2.7)r + rα =∑ α ,β α ,β +6 
β =1 

rwhere α and β are atom indices and r are vectors corresponding to the size pairs of 

opposite nearest neighbors in the fcc lattice. The summation is taken over the six pairs of 

opposing neighbors of an atom. For an atom in a perfect FCC structure, the 

centrosymmetry parameter is zero. By plotting the atoms with a centrosymmetry 

parameter larger than some cutoff value (2.0 for this study), we can visualize the 

dislocation structure of the deforming material. 

2.3 Overview of Particulate Material Constitutive Models 

A constitutive law describes how a material strains or deforms both elastically and 

plastically when it is stressed. The response of the material to the state of stress is 

described by a yield surface expressed in terms of stress space.  The equation of the yield 

surface is defined such that the state of stress inside the surface is elastic, while the stress 

state on the surface represents the yield point.  Further deformation beyond the yield 

point causes the stress state to remain on the yield surface however the yield surface may 

change shape or size with continued plastic deformation.  

Yield surfaces for particulate materials are typically expressed in terms of 3-D 

principal stress space (σ1, σ2, σ3) or in terms of the stress invariants I1 and J2. The first 

invariant of the Cauchy stress is defined as  
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I = Tr(σ ) . (2.8)1 

The second invariant of the deviatoric part of the Cauchy stress J2, also known as the von 

Mises equivalent stress, is defined as  

1J 2 = σ ′ :σ ′ (2.9)
2 

where the deviatoric stress tensorσ ′ is defined as 

σ ′ = σ −
1 Tr( )σ I  . (2.10) 
3 

For the particulate models discussed herein, the yield surfaces are depicted on hydrostatic 

pressure p and deviatoric stress q axes, where 

1 1 p = − I = − Tr(σ )  and (2.11)
3 1 3 

(2.12)

Original formulations of granular material based models, such as Mohr-Coulomb 

and Drucker-Prager models, included interparticle friction yet assumed an associated 

flow rule which led to excessive dilatency and unlimited hydrostatic compression.  The 

Drucker-Prager yield surface with a dependence on hydrostatic pressure was initially 

proposed by Drucker and Prager [1952] and was primarily used for characterizing the 

material behavior of geoscience materials (ie. soils). As shown in Figure 2.2 (a), in 3D 

principal stress space the Mohr-Coulomb failure surface is a cone with a hexagonal cross 

section, and as shown in Figure 2.2(b) the Drucker-Prager failure surface is a cone with a 

circular cross-section that encloses the elastic domain for the Mohr-Coulomb yield 

criterion. Both surfaces describe the response of a material due to shear and normal 
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stress, where the failure criterion is represented by the shear failure envelope.  Either of 

these shear plasticity models can be combined with a cap hardening model to account for 

deformations and densification under pressure.  The cap plasticity model was introduced 

by Drucker et al. [1957] and later modified by DiMaggio and Sandler [1991] who 

implemented different shapes for the Drucker-Prager model hardening cap and added a 

non-associated flow potential to the shear failure region.  

(a) (b) (c) 

Figure 2.2  (a) View of Mohr-Coulomb failure surface in 3D space of principal stresses 
(b) View of Drucker-Prager yield surface in 3D space of principal stresses, 
(c) and a comparison of Drucker-Prager and Mohr-Coulomb yield surfaces in 
2D principal stress space. [http://en.wikipedia.org/wiki/Yield_surface] 

Thus as shown in Figure 2.3, the modified Drucker-Prager Cap Model is a double 

surface plasticity model consisting of an elastic region in stress space bounded by a shear 

yield surface, Fs, in the low pressure region which represents internal friction, and a cap 

yield surface, Fc, in the high pressure region which represents compression. The general 

equation for the shear yield surface of the model is 

F = q − p tanϕ − d = 0  (2.13)s f 0 
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where d0 is the material cohesion strength, φf is the material internal friction angle, q is 

the deviatoric stress, and p is the hydrostatic pressure.  The cap yield surface is defined as 

2 1 2F = q + 
R 2 [p − p ] − d c a − ( p −1) tanϕ = 0 , (2.14)a f 

where R is a material parameter called the cap eccentricity that controls the shape of the 

cap. The cap yield surface hardens or softens as a function of the volumetric plastic 

strain.  Volumetric plastic compaction (when on the cap yield surface) causes hardening, 

while volumetric plastic dilation (when on the shear failure surface) causes softening. 

The Modified Drucker-Prager/ Cap model was used in the current research to formulate 

the macroscale continuum friction model for granular materials. 

cap 

vol part 

dev part 

  

                                      

 
     

 
 

 

 

 

 

Figure 2.3 Shear failure and cap yield surfaces in p-q stress space for a particulate 
model. 

2.4 Overview of BCJ Plasticity Model 

During the powder compaction process, large material rotations and deformations 

occur. To describe and capture the deformation of the ductile metal particles in the 

continuum, we use the BCJ internal state variable (ISV) plasticity model [Bammann, 

1990; Bammann et al., 1993].  ISVs are useful to model collective effects of changing 
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material structure involving multiple mechanisms at multiple length scales.  To capture 

the effects in the microstructure, a representative volume element (RVE), which is a 

statistical representation of a material point, is used.  Figure 2.4 shows the volume 

element with microstructural features, such as voids and dislocations, being replaced by a 

continuum element that describes these features using ISVs.  In the BCJ plasticity model, 

the effect of the ISVs are captured by the plastic flow rule (commonly referred to as the 

plastic rate of deformation) Dd
p  which, assuming a von Mises yield criterion,is expressed 

as 

2.15) 

where θ is the temperature, α is the kinematic hardening variable tensor, κ is the isotropic 

hardening variable, f(θ) is the rate dependency affecting initial yield, V(θ) is related to the 

magnitude of the rate dependent yield, and σy(θ) is the rate-independent yield stress. In 

the current study, the BCJ Plasticity model is modified to include a frictional hardening 

parameter in the plastic flow rule and is covered in detail in Section 4.5.  
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Figure 2.4 (a) Microstructural features, such as voids and dislocations, in particle model 

replaced by (b) a continuum element that is described by internal state 
variables, such as κ, α , and φ . 
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CHAPTER III 

MULTISCALE MODELING OF FRICTION USING MOLECULAR DYNAMICS  

3.1 Introduction 

Beginning with the first postulates by Leonardo da Vinci in the 15th century, there 

have been many studies on understanding the frictional resistance between sliding 

surfaces. However, the the first published account by Amontons in 1699 and later studies 

by Coulomb in 1779 gave rise to modern macroscopic friction laws. Amontons work 

suggested that the friction force is dependent on the normal load and and independent of 

the apparent area of contact.  Coulomb extended that work to show that the kinetic 

friction force is independent of the sliding velocity at ordinary sliding speeds.  Thus, the 

Amontons-Coulomb law was developed as 

Ff = μFn (3.1) 

and states that the sliding friction force is proportional to the normal load but is 

independent of the apparent or macroscopic contact area Aa and the sliding velocity V. 

The frictional force Ff is the tangential force resisting the relative motion of two surfaces 

pressed against each other with a normal force Fn. The constant of proportionality μ is 

referred to as the coefficient of friction and is dependent on the material and on whether 

the bodies are in a state of sticking μs or in a state of sliding μk. Although early 

investigators, including Amontons and Coulomb, thought that friction arose from 

mechanical interlocking asperities, additional studies into the mechanisms of friction 
20 
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disagree. Because real surfaces are usually not smooth at the microscopic level, actual 

contact between surfaces only takes place at the tops of the asperities during sliding, and 

the real microscopic area of contact is smaller than the apparent macroscopic area of 

contact. Based on this notion Bowden and Tabor [1950] presented an adhesion model for 

friction that differs from the original Amontons-Coulomb model in that it assumes 

friction is proportional to both the real area of contact Ar due to asperities and shear 

strength at the interface τs. 

F =τ A (3.2)f s r 

The basis of the adhesion theory is that asperities of sliding surfaces form welded 

junctions with opposing surfaces during contact, and the junctions must be sheared for 

the surfaces to slide. Therefore, the shear force to overcome these junctions depends 

directly on the real area of contact which is a function of the applied normal and 

tangential loads. Adhesion effects are important at smaller length scales because the 

adhesion caused by intermolecular forces between the interfaces of materials becomes 

more significant.  However, most theories lack the characteristic length parameters 

needed to capture size effects which cause surface phenomena to dominate at nano- and 

micro-scales.  

With the development of the Surface Force Apparatus (SFA) and Atomic Force 

Microsope (AFM), microscale and nanoscale friction measurements became possible. 

Using a SFA Homola et al. [1990] experimentally obtained the friction stress at the 

contact between two microscale mica surfaces.  Homola’s research demonstrated that the 

frictional force is proportional to the real molecular contact area, and that the adhesion 

model could be used to describe the frictional behavior during atomic sliding.  Later, 
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using AFM experiments, Carpick et al. [1996] obtained the friction stress between two 

nanoscale mica surfaces and determined that the friction-load relation was proportional to 

the area of contact predicted by the Johnson-Kendall-Roberts (JKR) theory [Johnson et 

al, 1971]. A comparison of the two studies revealed that the friction stress obtained using 

the AFM experiment was approximately 30 times larger than the values measured in the 

SFA experiment, suggesting a length scale effect in friction.   

Because of the size dependence of friction shown experimentally [Homola et al., 

1990; Carpick et al., 1996; Bhushan and Nosonovsky, 2003; Zhang et al., 2001], efforts 

have been made to better understand this complex process at a smaller scale using 

dislocation-based models.  Several researchers have suggested that dislocation assisted 

sliding is the main mechanism responsible for the scale dependence of the shear strength 

at the interface for most materials. Hurtado and Kim [1999a,b] analyzed the scale 

dependence of friction for single asperity contacts using a discrete dislocation model and 

demonstrated a size dependent friction stress separated into three zones.  In the first zone, 

the friction stress is equal to the theoretical shear strength of the solid for contact 

diameters less than 20 nm.  In the second zone, the friction stress is equal to the Peierls 

stress for contact diameters between 20 nm to 20 µm.  And, in the third zone, the friction 

stress is equal to the stress to nucleate a dislocation loop at the edge of the contact for the 

transition between these zones. Similarly, Bhushan and Nosonovsky [2003] considered 

the scale effects in friction from the nanoscale to the macroscale using a scale dependent 

shear strength and determined relationships for an elastic and a plastic friction coefficient 

as a function of a characteristic length parameter based on strain gradient plasticity and 

dislocation-assisted sliding. Using discrete dislocation dynamics, Deshpande et al. 
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[2004] analyzed the initiation of sliding in single crystals under plane strain conditions 

and suggested that the shear stress to initiate sliding is a function of contact size.  More 

recently, Tambe and Bhushan [2005] decomposed nanoscale friction into several 

components, such as adhesion and deformation, and developed an analytical nanoscale 

friction model based on experiments and included a velocity dependence of the friction 

force. 

The issue of whether friction is a thermodynamic force or kinematic variable is 

also an important issue when examining different size scales. In other words, some 

researchers have focused on the stress dependence of friction (thermodynamic force) 

while others have focused on the strain dependence of friction.  MD simulations have 

revealed a size scale effect related to dislocation nucleation influencing the yield stress as 

a function of the volume per surface area of the specimen [Horstemeyer et al., 1998; 

Horstemeyer et al., 2001a,b; Gerberich et al., 2002; Horstemeyer et al., 2003]. 

Alternatively, other MD studies related to kinematic/geometrical effects, nanoscale 

fracture, and nanoscale fatigue have shown no size scale effects and have revealed self-

similar, scale invariant behavior. Three examples illustrate no size scale dependence 

related to kinematics/geometry/strain.  Horstemeyer et al. [2002] performed macroscopic 

single crystal experiments of copper and compared the results to MD and microscale 

crystal plasticity simulations for torsion and simple shear.  The results showed similar 

strains and gradients of strain at all size scales although the stress states were different. 

MD, microscale crystal plasticity and macroscale internal state variable plasticity 

simulations were performed for the simple shear load case in [Horstemeyer et al., 2003]. 

These simulations clearly showed very similar strain states, but different stress states as a 
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function of size scale. In Solanki et al. [2005], macroscale experiments of imploding 

rings were compared to MD simulation results and microscale crystal plasticity 

simulation results, and again, the geometry changes, strain levels, and strain gradients 

were similar in all cases regardless of the size scale. In terms of fatigue, researchers 

employing MD simulations [Potirniche et al., 2005a, 2006b] have shown that nanoscale 

crack growth rates are similar to microcrack growth rates with the same mechanisms 

existing at all size scales. In terms of void growth, MD simulations [Potirniche et al., 

2005b, 2006a] have showed size scale effects in the elastic regime but scale invariance 

quickly developed as plasticity was induced from the nucleation, movement, and 

interaction of dislocations.  Hence the question arises regarding frictional effects on the 

size scale: are the frictional effects size scale dependent like the stress state or are they 

size scale independent like the geometric quantities or is it a combination of both? 

Some MD simulations have been pursued to address such a question and to gain a 

more in depth understanding of the mechanisms of friction at the atomic scale.  Early 

investigations by Landman et al. [1992] who performed MD simulations of tip-substrate 

systems to study adhesive interactions and their effect on wear and friction for Ni/Au and 

other materials revealed atomic stick-slip, material transfer, and other phenomena.  MD 

studies were also performed by Kim and Suh [1994] to study the effect of interatomic 

forces on frictional behavior at the atomic-scale and to gain further insight into the 

fundamental causes of friction.  Kim and Suh simulated AFM experiments using 2-D MD 

studies of argon that indicated adhesion is not the only mechanism of atomic friction as 

previously thought. They also observed an increase in substrate temperature due to 

frictional energy dissipation at the contact.  Zhang and Tanaka [1997] used MD methods 
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to analyze the deformation of an atomic lattice caused by sliding.  In comparing their 

results to microscale behavior, they found that slip lines generated by dislocation motion 

are very different from those predicted by the slip-line theory of plasticity and concluded 

that a new theory needed to be developed to bridge the gap between the atomic analysis 

and continuum mechanics.  Using MD simulations Gao et al. [2004] confirmed that for 

nonadhering surfaces Amontons’ law accurately predicted friction when compared with 

experimental data.  Additionally, friction anisotropy at nickel interfaces have also been 

investigated using MD simulations [Qi et al., 2002]. 

In the current study, MD simulations using embedded atom method (EAM) 

potentials were performed to model the contact behavior of two spherical nickel 

nanoparticles and to study the microstructural effects of friction between the interface. 

Evolutions of the dislocation structures were compared for different sized particles to 

quantify the length scale effects of friction and the relationship between friction and the 

dislocation structure. Using contact laws and an adhesion law for friction, we developed 

a friction model that captures the atomic scale effects at the interface of the contacting 

surfaces from the MD simulations.  The resulting interface friction model formulation 

combined the influence of loading angle and particle size and was validated with 

experimental results.   

3.2 Simulation Method and Setup 

MD simulations using a nickel EAM potential [Daw and Baskes, 1984; Foiles et 

al.,1986] were performed on two contacting single crystal nanoparticles of various sizes 

and contact angles subjected to a uniaxial compressive load along the y-axis which 
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corresponded to the [010] crystallographic direction.  As shown in Figure 3.1 and Figure 

3.2, the MD models consisted of two spherical fcc nickel (Ni) single crystal nanoparticles 

of the same diameter, D, (3.52 nm, 7.04 nm, 10 nm, or 14 nm).  The particles had lattice 

orientations of  <100> with origins at the particle centers.  Because the models consisted 

of perfect lattice structures, there were no initial defects in the model.  Contact angles γ of 

0°, 30°, and 60° were used in the simulations and were defined as the angle between the 

loading axis (y-axis) and the normal axis of the contact surface.  A half sphere was added 

to each end of the model to provide a fixed surface for the boundary conditions. 

Boundaries were defined as free surfaces in the x- and z-directions, and for each model, a 

few planes of atoms at the top and bottom (xz planes at the +y and –y extrema) of the half 

spheres were fixed on their perfect lattice sites.  

Figure 3.1. Schematic of two particle model showing active nickel atoms as white 
circles and fixed boundary atoms as grey. The arrows indicate the loading 
direction. The model setup includes contact angles of γ = 0°, 30° or 60°, 
diameter D=3.52, 7.04, 10 or 14.08 nm, and velocity of 0.22 nm/ps up to 
20% strain. The orientation of the crystal is shown on the right. 
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Thermal velocities of the interior (active, non-fixed atoms) were initialized using 

a Boltzmann distribution at a chosen temperature of 300 K and were allowed to 

equilibrate for 10 ps to accommodate any surface relaxation in the system.  The MD 

simulations were carried out using the constant volume constant temperature (NVT) 

conditions at a temperature of 300 K.  Because moving the fixed planes of boundary 

atoms adds considerable energy to the active atoms, a Nosé-Hoover thermostat [Nosé, 

1984; Hoover, 1985] was used during the molecular dynamics simulation to keep the 

active atoms at the constant temperature of 300 K.  The thermostat applies a damping 

factor to the active atoms based on the difference between their current temperature and 

the desired temperature.  Friction was generated by using the constant velocity method 

(CVM) to apply a compressive load of ±0.22 nm/ps to the upper and lower boundary 

atoms in the model using a linear y velocity profile given by 

v y = ε&y , (3.3) 

where the applied strain rate ε& is calculated from the initial height yint of the model as 

0.22nm / psε& = . (3.4) 
0.5yint 

A linear velocity profile was used to avoid an initial shock to the system from an 

instantaneous application of velocity on the upper and lower fixed atomic planes.  The 

interior atoms were allowed to move freely in response to the applied loading.  The 

imposed velocity resulted in strain rates on the order of 108 /s. The applied strain rates 

were high because atomistic simulations start with an atomic frequency in which the 

periods are on the order of femtoseconds (10-15 s or fs). Therefore for smaller strain rates 

the MD simulations would last an inordinate amount of time.  A timestep of 5 fs was 
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used, which is safely below the value where the dynamics becomes unstable.  The models 

were compressed for up to 20% true strain with the applied strain at each time step 

calculated as  

ε = tε&  . (3.5) 

The MD simulations were performed using the MD code WARP (Plimpton, 1995) 

on a system of IBM Linux Superclusters using multiple parallel processors. Warp 

calculated the energy, force, and stress based on the chosen EAM potential for nickel 

[Foiles et al.,1986]. The total energy is given by the following equation 

i i ij 1 ij ijE = ∑ F 
⎛
⎜⎜∑ ρ (r )

⎞
⎟⎟ + ∑ϕ (r )  . (3.6)

2 
i ⎝ i≠ j ⎠ ij 

Eq.(3.6) predicts that the total energy is equal to the embedding energy F which is a 

function of the electron density ρ due to neighboring atoms plus the addition of the 

potential energy term φ and  rij
k is the position vector between atoms i and j. The force 

between atoms is calculated from the total energy as 

k ∂Efij = k , (3.7)
∂rij 

where the number of superscripts denote the rank of the tensor and the subscripts denote 

the atom counting system. From the forces, the dipole force tensor, β, is determined for 

each atom and is given by  

km k mβ i = 1 ∑ 
N 

fij rij  , (3.8) 
Ωi j (≠i) 

where N is the number of nearest neighbor atoms, r is the displacement vector, and Ω is 

the atomic volume.  In this way β is analogous to the stress tensor at the atomic site. 
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Using from the MD simulations the global stress tensor over the continuum [McLellan, 

1974], which is interpreted as a volume average over the specimen,  

N 
km 1 kmσ = N ∑β i (3.9) 

where N is the total number of atoms in the specimen.  

Another common output parameter is the centrosymmetry parameter. The 

centrosymmetry parameter provides a measure of a given atom’s deviation from the 

symmetric crystal structure and for an FCC crystal is (Kelchner et al., 1998) given by 

26 r rC FCC (3.10)r + rα =∑ α ,β α ,β +6 
β =1 

rwhere α and β are atom indices and r are vectors corresponding to the six pairs of 

opposite nearest neighbors in the fcc lattice. For an atom in a perfect FCC structure, the 

centrosymmetry parameter is zero. By plotting the atoms with a centrosymmetry 

parameter larger than some cutoff value (2.0 for this study), we can visualize the 

dislocation structure of the deforming material.  Post-processing of the MD simulation 

data was performed using EnSight visualization software developed by Computational 

Engineering International (CEI), Inc.  
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Figure 3.2. Atomic diagrams for the Ni nanoparticles with atoms in their original fcc 
lattice positions at 60 degree contact angle. 

3.3 Results and Discussion 

3.3.1 Stress-Strain Response 

After the models were allowed to thermally equilibrate, we observed that stresses 

remained in the particles.  This effect has been similarly reported by other researchers 

[Koh and Lee, 2006] in unstretched Au and Pt nanowires. In their simulations, Koh and 

Lee [2006] observed initial tensile stresses and determined that the magnitude of the 

initial stresses varied inversely with the proportion of surface atoms.  They attributed the 
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presence of the initial stresses to surface relaxation in fcc transition metals.  Because the 

surface atoms have a higher electronic cohesive energy than the interior atoms, the 

unrestrained surfaces tended to contract while the restrained surfaces built up tensile 

forces. This effect is due to the high proportion of surface atoms in the nanoscale model 

indicated by a low volume-per-surface-area ratio as shown in Figure 3.3 for the current 

simulations.  As the volume-per-surface-area increases, which corresponds to an increase 

in particle size, the initial stresses decrease.  In the MD particle models the initial stress 

state included shear stresses as well as tensile stresses due to the offset angle of the 

contacting particles.  When the contact angle is zero, only initial tensile stresses were 

present in the model.  Figure 3.3 demonstrates the relationship between the initial stresses 

and the volume per surface area in the MD simulation models.  As indicated in Figure 

3.3, both initial tension and shear stresses increased as the size of the particles decreased. 

It is also apparent that only the initial tensile stresses are influenced by the contact angle. 

As the contact angle increased, the initial tensile stresses present in the model decreased. 

Thus, there is a pre-existing strain in the simulation, and the simulations were started in a 

pre-stressed condition. To account for this effect, when the model reached equilibrium, 

after approximately 2% strain, the strain was reset to zero.  Therefore, the initial stresses 

were excluded from the MD simulation results analysis. 
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Figure 3.3. Effect of the particle size and contact angle on the initial stresses in the 
nanoscale model after 10 ps of thermal equilibrium. 

As shown by other researchers [Horstemeyer et al., 2001a] the stress-strain 

behavior for the atomic simulations differ from macroscale behavior.  Fluctuations due to 

thermal vibrations of the active atoms in addition to the micro-yield points due to 

dislocations initiating within the material prior to the maximum stress at the macro-yield 

point cause these differences. Horstemeyer et al. [2001a] showed by unloading atomic 

blocks of nickel at the microyield points that only the macro-yield points lead to plastic 

behavior and permanent deformation.  The shear stress-strain responses for the current 

simulations are provided in Figures 3.4- 3.11 and show the shear stress-strain response 

and the related atomic positions based on particle size and contact angle.  The stress-

strain curves were generated by plotting the average global shear stress of the active 

atoms of the center spherical particles as a function of applied strain.  The average shear 

stress σxy is determined from Eq. (3.9).  For the 3 nm and 7 nm models in Figures 3.4-
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3.7, the snapshots include all atoms in the model with the color of the atoms indicating 

the atomic shear stress βxy
i  (determined from Eq. (3.8).  Because of the large number of 

atoms in the 10 nm and 14 nm models, the atomic shear stress shown in Figures 3.8- 3.11 

includes only those atoms with a centrosymmetry parameter greater than 2.0.  In general 

the stress-strain response of the different size models is similar in character.  The shear 

stress increases as the specimens deform elastically until a single partial dislocation starts 

to nucleate from the particle boundary causing a slight drop in shear stress.  The shear 

stress continues to increase with applied strain until the yield point is reached, followed 

by a sharp drop in shear stress corresponding to dislocation glide across slip planes within 

the crystalline structure. With continued deformation the shear stress again increases 

until the maximum shear stress is reached which is again followed by a drop in shear 

stress as new dislocations are emitted and glide across the particle and either form a step 

on the other side or, as observed in some instances, leave behind a stacking fault. 

Dislocation structure formation and its relation to slip is discussed in detail in the next 

section. This oscillating behavior of the shear stress dropping and peaking continues with 

increasing strain for the duration of the simulations.  The sawtooth pattern of the shear 

stress-strain response is similar to that observed for the stick-slip behavior of nanoscale 

friction [Tomlinson, 1929]. 

From the plots and corresponding model snapshots at different stages of 

deformation it is apparent that the maximum negative shear stress, shown in red in the 

snapshots, indicates the slip resistance at the interface τf. The maximum global shear 

stress typically occurs within the interface region and influences the average shear stress 

response of the particles. For each model configuration, we obtained the friction stress by 
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averaging the atomic shear stress for the interface at the onset of slippage.  The friction 

stress measurements from the MD simulations revealed a length scale dependence.  The 

friction stress values are indicated on the average particle stress-strain plots in Figures 

3.4- 3.11 and are also included in Table 3.1.  Because of the difficulty (of the tedious 

nature) in obtaining the friction stress from the MD simulations, we obtained the 

following approximation for the friction stress based on the stress-strain plots  

τ f = σ max (3.11)
xy 

where σ max  is the maximum global shear stress of the particles. 
xy 

The size dependence of the shear yield stress implies a size dependence of the 

shear strength at the interface as suggested by other researchers [Fang et al., 2004]. The 

shear yield stress from the curves are size dependent as indicated in the summary of 

results in Table 3.1 and agree with previous findings of Horstemeyer et al. [1998, 2001]. 

Additionally, the material properties from the MD simulation are provided for each 

model configuration and include the effective shear modulus (due to the particulate 

nature of the models), the shear yield stress, the normalized shear yield stress, and the 

friction stress are included in Table 3.1. As shown in Figure 3.12, the normalized shear 

yield stress from the current MD simulations compares well with the size scale effect 

demonstrated by previous experimental and atomistic simulation data.  As the size of the 

material decreases, the shear yield stress approaches the maximum crystalline strength or 

the normalized theoretical shear strength of the material, which is 0.2 for nickel.   
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Table 3.1 Material properties from the MD simulations. 

Particle 
size

 (nm) 

Contact 
Angle 

(°) 

Effective 
Shear 

Modulus, G 
(GPa) 

Shear 
Yield 

Stress τy 
(GPa) 

Normalized 
Shear Yield 

Stress 
τy/G 

Friction 
Stress, 
τf 

(GPa) 
3.52 30 25 1.08 0.04 1.05 
3.52 60 30 1.21 0.04 1.05 
7.04 30 11 0.82 0.07 0.60 
7.04 60 15 0.70 0.05 0.60 
10.0 30 7.8 0.55 0.07 0.50 
10.0 60 7.4 0.61 0.08 0.50 
14.0 30 9.7 0.55 0.06 0.45 
14.0 60 9.4 0.64 0.07 0.45 

Hurtado and Kim [1999a] postulated that for nanosize contacts with a radius less 

than 10 nm the friction stress is constant due to concurrent slip without the aid of 

dislocation motion. Although our MD models fall within this size range, the simulation 

results indicate that dislocation motion does contribute to slippage along the interface 

even at this small size scale.  The influence of dislocation activity on the friction stress is 

shown to increase with specimen size even within the small nanoscale range we 

evaluated. Thus, the current research does appear to support suggestions from Hurtado 

and Kim [1999a] of a transition from primarily concurrent slip for the smallest contact 

model to one of dislocation assisted slip as the contact size increases.  Detailed analyses 

on dislocation structures and mechanisms of slip observed in the current study are 

presented in the next section. 
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Figure 3.4 Average shear-stress strain response for 3.5 nm particles with <100> crystal 
lattice orientations and a 30 deg contact angle. 
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Figure 3.5 Average shear-stress strain response for 3.5 nm  particles with <100> crystal 
lattice orientations and a 60 deg contact angle. 

 

37 



www.manaraa.com

  

 
 

  

 
 

 

 

τf = 0.60 GPa 

a b 

c 

d 

e 

f g 

h 

Regions of high Sxy 

Partial 

Regions of high Sxy 

Figure 3.6 Average shear-stress strain response for 7 nm particles with <100> crystal 
lattice orientations and a 30 deg contact angle. 
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Figure 3.7 Average shear-stress strain response for 7 nm particles with <100> crystal 
lattice orientations and a 60 deg contact angle. 
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Figure 3.8 Average shear-stress strain response for 10 nm particles with <100> crystal 
lattice orientations and a 30 deg contact angle. 
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Figure 3.9 Average shear-stress strain response for 10 nm particles with <100> crystal 
lattice orientations and a 60 deg contact angle. 
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Figure 3.10 Average shear-stress strain response for 14 nm  particles with <100> crystal 
lattice orientations and a 30 deg contact angle. 
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Figure 3.11 Average shear-stress strain response for 14 nm particles with <100> crystal 
lattice orientations and a 60 deg contact angle. 
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 Normalized theoretical shear strength 

Figure 3.12 Log-log shear yield stress normalized by the shear modulus versus volume-
per-surface area for nickel, gold, and copper for various experiments and 
MD simulations. 

3.3.2 Dislocation Structures and Interfacial Slip 

In this section we examine dislocation structure formation in the MD simulations 

to gain insight and an understanding of the underlying mechanisms of friction between 

the particles.  The surface phenomena associated with frictional sliding result in high 

dislocation densities and considerable plastic straining near the contact interface.  Plastic 

deformation involves the generation and propagation of dislocations in the bulk and at the 

interface. As the actual contact size decreased, surface-to-volume ratio increased (as 

specimen size decreased) which resulted in large plastic strains and strain gradients near 

the interface. Several researchers [Hurtado and Kim, 1999a,b; Bhushan and Nosonovsky, 
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2003] have suggested that dislocation assisted sliding is the main mechanism responsible 

for the scale dependence of the shear strength at the interface leading to scale dependent 

friction. The size effects which cause surface phenomena to dominate are not included in 

conventional friction theories but are clearly revealed in these simulations. 

The snapshots from the MD simulations provided in Figures 3.13 – 3.16 clearly 

show the evolution of dislocation nucleation and glide along crystallographic planes.  In 

the figures the centrosymmetry parameter was used to visualize the dislocations in the 

model. Kelchner et al. [1998] found that the centrosymmetry parameter could easily 

distinguish between surface atoms, stacking faults (one or two layer interruptions in the 

stacking sequence of the two close-packed lattices), and partial dislocations (dislocations 

which shift planes of atoms past each other only partially) in an MD simulation.  Full 

dislocations shift a plane of atoms past another in a way that preserves crystal symmetry. 

For nickel, the centrosymmetry parameter is zero for atoms in a perfect lattice.  The 

atoms in Figures 3.13 – 3.16 are colored according to the value of the centrosymmetry 

parameter, where green is for partial dislocations (4.1-4.7 Å2), yellow is for stacking 

faults (5.4-5.75 Å2), and red is for surface atoms (>18 Å2). As shown in the figures, by 

using MD and the centrosymmetry parameter, we were able to observe the nucleation of 

partial dislocation loops and other complex dislocation structures in the simulation. 

Figure 3.13 shows several images of the defective structure in the 3.52 nm 

particle, 60 degree contact model at different strains in the simulation.  As observed in 

the figure, at the macroyield point, a partial dislocation is emitted at an edge of the 

contact interface and glides across the contact area causing a decrease in average particle 

shear stress as it dissolves into the other side of the particle boundary.  The dislocation 
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structures consist of stacking faults surrounded by partial dislocations.  Similarly at 8% 

strain a partial dislocation is observed nucleating from the contact boundary and causes a 

peak in stress prior to it gliding across the particle.  A dislocation is shown to move 

across the contact region at 13% strain, which is also a peak stress point on the shear-

stress strain curve. Thus, in the 3.52 nm particle model, one can easily distinguish 

nucleation and glide of single dislocations across the contact region, indicating that 

dislocation assisted sliding contributes to sliding at the interface.   

To observe the size effect, we also studied the evolution of the dislocation 

structures for the 14 nm, 60 degree contact model.  As shown in Figure 3.14, the resulting 

dislocation structure consist of stacking faults surrounded by partial dislocations similar 

to the structures in the 3.52 nm model.  The first microyield occurred at approximately 

1% strain, with dislocation activity observed starting at 2% strain.  At approximately 

3.5% strain a dislocation structure nucleates at the contact region and glides across the 

contact region causing a drop in stress. At 5.5% strain, a partial dislocation originates in 

the contact region, bows out from the interface, and joins with another partial dislocation 

forming in the lower particle.  In a similar way, as shown in Figure 3.15, dislocation 

structures continue to nucleate and glide near the contact region at 5.5%, 8%, 10% and 

11.5% strain. From the behavior observed in Figures 3.14 and 3.15 it is apparent that 

initially dislocation activity is primarily limited to the interface region.  With increased 

size, the dislocation structures become much more complex as indicated in Figure 3.15. 

With increased strain, as shown in Figure 3.16, the dislocation structures continue to 

grow until slippage is observed at the contact interface when the shear stress reaches the 

friction stress.  Also, as the particles are continually strained and plastic deformation 
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increases, the dislocations tend to move more toward the particle centers. The figures also 

indicate that dislocation formation due to friction occurs at contact boundaries and glide 

through the particles, as well as across the contact causing plastic deformation.  When the 

shear force approaches the friction stress, sliding occurs along the contact interface.  In 

some instances sliding occurs along a slip plane near the contact region instead of along 

the contact interface due to the slip plane being a more favorable direction.  With 

increased loading/strain, complex dislocations form within the particles.  As the stress of 

the particles increases, dislocations also start to emit from the particle boundaries, away 

from the contact region, at approximately 12.5% strain as shown in Figure 3.16. 

Additionally, one can distinguish dislocation assisted slip at the interface and dislocation 

glide through the particles.  An increase in dislocation activity occurs in the lower 

particle up to 18% strain, as evident in Figure 3.17. 

As shown in Figure 3.18, slippage along the interface was on the order of one 

Burgers vector, which further indicates the mechanism of interfacial slip is due to 

dislocation glide even for the nanoscale particle models. 

47 



www.manaraa.com

Partial emitted at 
contact 

Partial dislocation 
gliding across slip 
l 

Dislocation 
continues across 
contact 

Decreased Sxy 

4% strain -Macroyield point 

8% strain- Peak stress point 

dislocation 

Peak in Sxy Decreased Sxy as partial 
glides and particle 

Increase in Sxy as partial 
nucleates from contact edge 

Partial 

13% strain- Peak stress point 

Drop in Sxy as dislocation 
glides across interface 
region on slip plane 

Decrease in Sxy as 
dislocation resolves into 
grain boundary 

  

 
  

 
 

 

 

  
 

 
  
 

 
 

 
 Peak in Sxy as 

dislocation is nucleated 

  

 

   

Figure 3.13 Evolution of dislocation structures and plastic deformation from MD 
Simulations for 3.52 nm particle model with a 60 degree contact angle.  
Dislocation nucleation and glide along discrete slip planes through the 
centers and along the interface of two contacting particles is demonstrated 
along with formation of complex dislocation structures attributing to plastic 
deformation. 
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Figure 3.14 Evolution of dislocation structures and plastic deformation between 3-5% 
strain from MD Simulations for 14 nm particle model with a 60 degree 
contact angle. Dislocation nucleation and glide along discrete slip planes 
through the centers and along the interface of two contacting particles is 
demonstrated along with formation of complex dislocation structures 
attributing to plastic deformation.   
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Figure 3.15 Evolution of dislocation structures and plastic deformation between 5-12% 
strain from MD Simulations for 14 nm particle model with a 60 degree 
contact angle. Dislocation nucleation and glide along discrete slip planes 
through the centers and along the interface of two contacting particles is 
demonstrated along with formation of complex dislocation structures 
attributing to plastic deformation.   
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Figure 3.16 Evolution of dislocation structures and plastic deformation between 12-15% 
strain from MD Simulations for 14 nm particle model with a 60 degree 
contact angle. Dislocation nucleation and glide along discrete slip planes 
through the centers and along the interface of two contacting particles is 
demonstrated along with formation of complex dislocation structures 
attributing to plastic deformation.   
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Figure 3.17 Evolution of dislocation structures and plastic deformation between 16-18% 
strain from MD Simulations for 14 nm particle model with a 60 degree 
contact angle. An increase in dislocation structures is evident with 
increased strain. 
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Figure 3.18 Snapshots from MD simulation for 3.52 nm particles with 60 degree contact 
angle demonstrating microslip by one Burgers vector along the periphery of 
the interface. 

3.3.3 Constitutive Model for Elastic-Plastic behavior 

From a continuum perspective, we studied the contact of two nanoparticles having 

the same mechanical properties. From the MD simulation results, we compared 

measurements of the relative tangential and normal displacements of the two spherical 

particles with measured indentation and contact radius at the interface of the particles. 

The elastic constants were denoted as E1,  E2, v1, and  v2 for Young’s modulus and 

Poissons ratio, respectively for particles 1 and 2. The materials were considered elasto-

plastic with the effects of strain-hardening considered.  For two contacting particles with 

radius r1 and r2, the relative radius, rc, and elastic modulus, Ec, were defined as 

r r rc = 1 2 , (3.12)
r + r1 2 

and 

−1
⎛1 − v1

2 1 − v2
2 ⎞

E + ⎟ . (3.13)= c ⎜⎜ ⎟
⎝ E1 E2 ⎠ 
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The effective shear modulus Gc was evaluated in terms of the effective elastic modulus as 

Gc = 
Ec . (3.14)

2(1+ v) 

In analyzing the contact forces we considered the tangential tractions between the 

two particles, as shown in Figure 3.19. The solution for the tangential traction may be 

expressed in terms of the interface behavior of the material, such as fully sticking (no 

slip), partial slipping, and gross sliding.  Slip is defined as the relative tangential 

displacement of points on the contact surface with respect to the displacement of the 

undeformed regions of each particle.  If a tangential force causes elastic deformation 

without slip at the interface, the contact is in a state of sticking and the tangential traction 

is defined as 

4Gutτ t =  , (3.15)
πa(2 −ν ) 

where uT is the relative tangential displacement of the particle centers.  The elastic 

tangential displacement is directly proportional to the tangential force because it is 

independent of contact area. Thus the tangential force may be derived as [Johnson, 1987] 

8Gu aFt =τ t (2πa2 ) = t . (3.16)
(2 −ν ) 

The distribution of tangential traction is radially symmetrical and increases radially, as 

represented by the following relation, [Johnson, 1987] 

F ⎛ r 2 ⎞
− 

τ t ( )r = ⎜1− 2 ⎟  . (3.17)t 
⎜ ⎟2πa a⎝ ⎠ 

As the applied tangential traction increases, microslip is inevitable at the edge 

(periphery) of the contact which results in a state of partial slipping or stick-slip 

2
1 
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condition. As shown in Figure 3.18, small relative motion or slip over part of the 

interface occurs, while the remainder of the interface deforms without relative motion 

resulting in adherence or “sticking” in those regions. Therefore, the displacement at the 

interface may be separated into an elastic or adhering component and a plastic or sliding 

component 

u = ue + u p (3.18)t t t 

The slip at the contact continues to increase with tangential loading until gross sliding 

occurs and the whole contact interface is sliding. 

A condition of gross sliding occurs when the relative slip at the interface is 

equivalent to the relative tangential displacement of the particle center.  When the contact 

is sliding, Coulomb law of friction is assumed,  

v r 
t , (3.19) Ft = −μ Fn 

where μ  is the friction coefficient, Fn is the normal force at the contact point, Ft is the 

tangential force is greater than or equal to the friction force Ff  at the contact, and t is the 

unit vector parallel to the contact plane. 
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Figure 3.19. Friction force is proportional to the tangential relative motion of the 
particle ut with reference to the relative tangential motion at the contact 
interface. 

Examination of the interface region of the MD simulations indicated that the 

particles were initially in a state of sticking at the interface. However, once the tangential 

traction was large enough to shear the contacting atoms, which implies equal to or greater 

than the friction stress  (τ ≥ τ f ), microslip occurred and the atoms on the periphery of the 

contact slipped by one Burgers vector as shown in Figure 3.18.  To evaluate the slip 

behavior in the MD simulation further, we also measured the tangential displacement at 

the contact and compared it to the actual displacement of the particle centers to determine 

the friction phenomena.  As shown in Figure 3.20, a plot of tangential force versus 
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tangential displacement also indicates sticking and slipping behavior in the MD 

simulations. 

As described in a previous study [Stone et al., 2008], the following macroscopic 

plastic contact equation [Storåkers et al., 1997] gave the best correlation for the normal 

load obtained from measurements of the normal displacement h in the MD models,  

(3.20)

where 

2ah = (3.21)
2c(n)2 rc 

and c(n)2 = 1.43 exp(−0.97(n)) [Larsson and Storåkers, 2000] is related to the size of the 

contact area and ranges from 0.5 for linear elasticity to 1.45 for perfectly plastic behavior.  

To consider strain-hardening based on a power law form, the following constitutive 

equation for the contact was applied 

σ = σ 0ε n , (3.22) 

where σ0 is a material constant, n is the hardening coefficient and σ and ε are the stress 

and strain in the uniaxial case.  For linear elasticity, n = 1 and σ0 = E, while for perfect 

plasticity, n = 1 and σ0 = σy, the yield strength of the material.  As shown in Figure 3.21a, 

Eq. (3.20) results in a nonlinear dependence of the normal load on the contact area.  The 

normal indentation was determined from measurements of the contact radius a 

throughout the MD simulations based on Eq. (3.20) and captured the size effect in the 

model as indicated when plotted again the normal load as shown in Figure 3.21b and is 

largely affected by the contact angle as indicated.  The size dependence of the normal 

load is captured by the indentation Eq. (3.21).  Figure 3.22 shows a plot of normal 
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indentation (displacement) h versus contact radius for the elasto-plastic analysis.  The 

normal displacement or indentation, h, of the two particles is due primarily to 

deformation in the contact region and as shown in Figure 3.22 was independent of the 

contact angle.  Because friction has been shown by previous researchers [Johnson, 1987] 

to have little effect, if any, on the normal load, we assumed that the stresses and 

deformation due to normal pressure and tangential traction are independent of each other.     
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(a) 

(b) 

Figure 3.20 Comparison of tangential force versus tangential displacement of the 
particle centers and tangential displacement of the contact interface from the 
MD simulations for (a) 3 nm dia. particle model and for (b) 7nm dia. 
particle model results.  
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(a) 

(b) 

Figure 3.21 Calculated normal load [Storåkers et al., 1997] versus (a) measured contact 
area and (b) versus normal indentation (MD EAM simulations) for various 
particle sizes and contact angles. 
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Figure 3.22 Measured normal indentation vs. measured contact radius from MD EAM 
simulations for various particle sizes and contact angles. 

3.4 Scale-Dependent Friction Model 

The classical theory of adhesion first postulated by Bowden and Tabor [1950] 

suggests that the friction force Ff to glide across a single asperity is proportional to the 

real area of adhesive contact Ar such that 

F = τ A , (3.23)f f r 

where τf  is the average shear strength during sliding and is independent of contact area. 

The adhesion theory results in a linear dependence of the friction force on the contact 

area and an independence of the coefficient of friction on the normal load.  However, the 

wide variation in ratio of friction stress to shear modulus measured experimentally in 

AFM and SFA indicate that the friction stress is not independent of contact size for all 

contact sizes [Homola et al, 1990; Carpick et al., 1996].  Although we observed a size 

dependence in friction stress at the nanoscale, within each model we assume that any 
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change in friction stress with respect to the dynamic contact area of a given simulation is 

negligible. Figure 3.23 includes a plot of the friction forces versus contact radius.  The 

results reveal that while particle size has some effect on friction force, the particle contact 

angle has the largest effect. 

Figure 3.23 Friction force versus measured contact radius for various particle size and 
contact angles. 

Because the coefficient of friction is the proportionality parameter between the 

tangential and normal loads, we plotted the tangential force versus normal force for both 

the 30 degree and 60 degree contact angles as shown in Figures 3.24-3.27 to quantify the 

coefficient of friction with different specimen sizes. The plots include the friction force 

calculated based on Eq. (3.23) where the friction stress is measured directly from the MD 

model and from using the approximation based on the maximum global shear stress given 

by Eq. (3.11). As indicated in the figures, there is a good correlation between the plots 

from each method, indicating that the global shear stress measurement gives a good 
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approximation for the friction stress.  Figures 3.24-3.27 also indicate that a nonlinear 

relation exists between the normal and tangential forces that can be described by the 

following power law relation, 

F = C (F + F )n (3.24)f 0 adh n 

where C0 is a constant and n is a hardening parameter.  The fitting parameters for the MD 

simulations are provided in Table 3.2.   

60 deg 

Figure 3.24 EAM MD simulation results for tangential force vs. normal force for a 3.5 
nm spherical particles. 
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Figure 3.25 EAM MD simulation results for tangential force vs. normal force for a 7.0 
nm spherical particles. 

Figure 3.26 EAM MD simulation results for tangential force vs. normal force for a 10.0 
nm spherical particles. 
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Figure 3.27 EAM MD simulation results for tangential force vs. normal force for a 14.0 
nm spherical particles. 

Table 3.2 Friction model parameters for the MD simulation results. 

Particle size 
(nm) 

Contact angle 
(deg.) 

C0 n 
 (exponent) 

Fadh 
(nN) 

3.52 30 0.47 0.5 1.10 
3.52 60 0.60 0.5 1.10 
7.04 30 0.60 0.55 0 
7.04 60 0.95 057 0.5 
10.0 30 0.40 0.65 0 
10.0 60 0.77 0.7 0.4 
14.0 30 0.44 0.68 0.5 
14.0 60 1.0 0.7 0.5 

The non-linear relationship between the friction force Ff and the normal load Fn is 

due to the non-linear dependence of the real contact area on the normal Fn and adhesive 

forces Fadh. However, as indicated in Figures 3.24-3.27, the size effect becomes much 

more significant as the contact angle is increased due to increased adhesion at the 

interface. A comparison of the friction force versus normal force based on particle size is 

given in Figure 3.28 for the 30 degree contact model and in Figure 3.29 for the 60 degree 

contact model. 
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Figure 3.28. EAM MD simulation results for tangential force vs. normal force for a 30 
degree contact angle. 

F = C (F + F )n 
f 0 adh n 

Figure 3.29 EAM MD simulation results for tangential force vs. normal force for a 60 
degree contact angle. 

66 



www.manaraa.com

  

                                                                                                                 

 

 

  

 

 

 

For comparison with other research studies, when the contact interface is in a state 

of slipping, we assumed that the coefficient of friction is defined based on the classical 

Coulomb friction law, 

Ftμ = (3.25)
Fn 

However, as observed in Figures 3.24 - 3.27, the tangential/normal force ratios from the 

MD simulations is not constant. Therefore, the coefficient of friction is not constant and 

was shown to be dependent on contact angle and particle size.  To study the evolution of 

the coefficient of friction, we plot the coefficient of friction as given by Eq. (3.25) versus 

applied strain.  The excellent correlation of the normal indentation to the plastic work 

hardening model, the contact indicates that the contact deformation is primarily plastic. 

Therefore we assume that the applied strain is equivalent to the plastic strain in our 

formulation.  As shown in Figure 3.30 for the 30 degree contact model and Figure 3.31 

for the 60 degree contact model, the coefficient of friction decreases to a saturation value 

with increased strain.  A listing of the saturation values for each model configuration is 

given in Table 3.3. 
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Figure 3.30 MD simulation results for the evolution of the coefficient of friction for a 30 
degree contact angle between the spherical particles. 

−cε pμ = μoe 

Figure 3.31 Correlated friction evolution equation from MD simulation data for 60 
degree contact angle between the spherical particles. 
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Table 3.3 Coefficient of friction saturation values from the MD simulations. 

Particle 
size (nm) 

Contact Angle 
(degrees) 

µ0  µsat Contact Angle 
(degrees) 

µ0  µsat 

14 60 0.63 0.23 30 0.14 0.06 
10 60 0.38 0.21 30 0.15 0.06 

7.04 60 0.33 0.16 30 0.16 0.05 
3.52 60 0.24 0.06 30 0.17 0.06 

The evolution of the coefficient of friction with applied strain is represented by 

the following relation for the coefficient of friction in terms of the length scale parameter, 

s 

V/As in meters, 

μ = −cε pμoe (3.26) 

where, 

μo = 0.208ln V 
As 

+ 4.3235  (3.27) 

and 

c = 0.6088ln V 
A 

+16.473 (3.28) 

are material parameters that account for the length scale effects.  The friction formulation 

in Eq.(3.26) is consistent with work by previous researchers who have shown a relation 

between the coefficient of friction and plastic strain or displacement at the interface 

[Fredriksson, 1976]. Coefficient of friction increased as the contact angle increased 

between the nanoparticles.  To show its capability, the friction model results for 

nanosized particles through particles 100 µm in diameter are included in Figure 3.32.   

The friction evolution in Eq.(3.26) is determined from integrating the following 

rate form of the coefficient of friction as 
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. (3.29)μ& = −cμ D p 

In this way, the friction model can be integrated into an ISV formulation for including 

length scale frictional effects based on adhesive forces and deformation at the interface 

information obtained from the MD simulations.  

pc 
oe εμμ − = 
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Figure 3.32 Friction evolution model for 60 degree contact angle between two spherical 
particles applied to particles in the micrometer range. 

3.5 MD Results Comparison with Experimental Data 

To validate the friction model results, we compared the saturated coefficient of 

friction values from the MD simulation to experimental data by others [Hanlon et al., 

2005, Mishra et al., 2004, Surender et al., 2004].  Figure 3.33 shows a plot of the 

coefficient of friction versus grain size for the MD simulation results compared to 

experimental data with grain sizes of 8, 22 and 61 μm.  The MD friction measurements 

compared favorably with the previous experimental studies.  A comparison of the MD 
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simulation and friction model results to experimental saturated coefficient of friction data 

in the micrometer and millimeter range is shown in Figure 3.34 and shows a very good 

correlation between the model and the simulation and experimental data.  

Figure 3.33 Comparison of saturated coefficient of friction between the MD simulation 
and the experimental results for Ni grain sizes of 8, 22 and 61 μm. 
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Figure 3.34 Comparison of saturated coefficient of friction values between the model 
prediction and experimental and MD simulation results based on volume per 
surface area. 

3.6 Summary of Chapter 3 

In this study we examined the interparticle contact behavior of two nickel 

nanoparticles of various diameters and contact angles using MD simulations with EAM 

potentials to describe the atomic interactions.  Specifically we calculated the normal load 

at the contact by applying measurements from the MD simulation to macroscale plasticity 

with a work hardening formulation.  By comparing measurements of the relative 

tangential and normal displacements of the two spherical particles with measured 

indentation and contact radii at the interface of the particles and by examining the 

interface region, we determined the initial state of the interface to be sticking with 

microslip occurring after the tangential traction was large enough to shear the atoms at 

contact. Using the measured shear strength at the interface, the friction force was 
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evaluated based on the adhesion law for friction.  The coefficient of friction was 

determined from the classical friction law based on the ratio of the friction force to 

normal force.  The coefficient of friction was evaluated and quantified based on a 

proposed evolution equation which takes particle size and contact angle into account.  A 

continuum internal state variable friction rate equation was formulated from the atomistic 

simulations and multiscale experimental data for nickel.  The internal state variable 

friction equation is a function of the volume-per-surface-area parameter and can 

adequately represent all length scales of importance from the nanoscale to the microscale.  
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CHAPTER IV 

HIERARCHICAL MULTISCALE FRICTION MODEL USING MOLECULAR 

DYNAMICS SIMULATIONS AND INTERNAL STATE VARIABLE        

PLASTICITY THEORY 

4.1 Introduction 

Accurate modeling and simulation of interfacial friction and the effect of friction 

on surface properties is an important area of research, because friction plays an important 

role in nearly all contact behavior between surfaces. Most model developments are based 

on describing the behavior of the friction stress during loading of the two contacting 

bodies. Because the contact behavior between surfaces is a key contributor to the friction, 

friction modeling must also include some aspect of contact modeling in its derivation. 

From the definition of the elastoplastic contact laws, the forces between the surfaces are 

determined.  Differences in the coefficient of friction between the nanoscale and 

macroscale have been observed experimentally [Suh and Sin, 1981; Bhushan and 

Nosonovsky, 2003]. Because of the scale dependence of the friction stress observed 

experimentally, a multiscale approach in developing the friction model is desired so as to 

capture the length scale effect of friction and to include the small scale phenomenon that 

results from friction and affects the microstructure at the macroscale. 
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Previous friction models have been developed based on Molecular Dynamics 

(MD) simulations, discrete dislocation dynamics, and finite element simulations.  These 

computer simulation methods have been pursued to complement experimental studies of 

friction.  Previous macroscale constitutive friction model formulations are typically 

phenomenological based on empirical relationships for the stress and strain behavior at 

the interface without any physical interpretation. The drawback with the empirical 

(analytical) friction models is that their usage is typically limited to the range of 

conditions for which they were curve-fitted and does not capture the length scale effects 

of friction. Early developments of friction constitutive laws have been done by several 

researchers [Cheng et al., 1985; Anand, 1993; Seguchi et al., 1974; Fredriksson, 1976; 

Michalowski and Mroz, 1978].  Raous et al. [1999] presented a constitutive friction 

model that coupled adhesion friction and unilateral contact. Scale dependent models are 

typically physics-based and use dislocation-based formulations to capture the lower 

length scale phenomena that contribute to the differences in friction stress measured 

experimentally. The scale dependence of the friction stress for single asperity contacts 

using a discrete dislocation model was also investigated by Hurtado and Kim (HK) 

[1999a,b]. Adams et al. [2003] later incorporated the HK model into a multi-asperity, 

multiscale model for contact and friction. Dominik and Tielens [1996] studied a 

theoretical model for sliding friction between two micron-sized elastic spheres.  Using 

discrete dislocation dynamics, Deshpande et al. [2004] analyzed the initiation of sliding 

in single crystals and found that the shear stress is a function of contact size.  However, 

Bhushan and Nosonovsky [2003] used a different approach and developed a model based 
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on the scale-dependent distribution of surface heights combined with scale-dependent 

shear strength due to dislocation nucleation from Frank-Read sources.           

In the current study, MD simulations were used to describe the friction stresses at 

the interface based on the underlying microstructural state and dislocation mechanics and 

used to capture the influence of deformation behavior on friction. Molecular Dynamics 

simulations with EAM potentials were performed to study the microstructural effects of 

friction between two contacting surfaces.  In Chapter 3, evolutions of the dislocation 

structures were compared for different sized particles to quantify the length scale effects 

of friction and the relationship between friction and the dislocation structure.  ISVs relate 

to the changes in the internal structure of a material and are useful to model collective 

effects of changes in the material structure involving multiple mechanisms at multiple 

length scales. From the nanoscale studies a multiscale friction model based on internal 

state variable theory was developed. The constitutive model was coupled with the 

Bammann-Chiesa-Johnson (BCJ) rate-dependent plasticity model to capture the 

deformation behavior due to dislocations at the interface. 

For simplicity, the current model formulation is developed for the frictional 

behavior of dry, unlubricated contact surfaces.  The proposed model is rate-independent 

and isothermal while accounting for frictional effects and plastic deformation at the 

interface. From the interface constitutive laws we formulate an interface friction model 

that considers the effect of adhesion and stick-slip during contact between the particles. 

The model is based on classical kinematic assumptions using the multiplicative 

decomposition of the total deformation gradient into elastic and plastic components and is 

modified to include friction components.  In the formulation the internal state variables 
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(ISVs) are derived from thermodynamical principles and plastic deformation due to 

dislocations is related to hardening ISVs. 

4.2 Kinematics 

Kinematics describe the motion of a body without considering the masses or 

forces that bring about the motion.  To describe the motion two frames of reference are 

used: the material (or Lagrangian) frame, in which X represents a point on the body in its 

reference configuration and the spatial (or Eulerian) frame, in which x represents a point 

on the body in its current configuration/ physical position.  Thus, the current 

configuration is a function of the reference configuration and time, 

x = χ ( X , t) . (4.1) 

The deformation of a small volume of the material is represented by the deformation 

gradient, F , and from which the spatial frame can be written in terms of the material 

frame as 

dx = FdX . (4.2) 

All equations are written in the current configuration. The tensors are denoted with 

underlines and vectors with over bars. Finite plasticity is based on earlier formulations 

by Kröner [1960] and Lee [1969] in which the deformation gradient F can be 

multiplicatively decomposed into elastic F e and plastic parts F p 

F = F e F p , (4.3) 

where the elastic deformation gradient F e represents the elastic stretching and rotating of 

the crystal lattice in the deformed (or current) configuration.  The inelastic deformation 

gradient F p represents local deformation associated with the dislocation motion which 
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leads to an intermediate (or relaxed) configuration.  To further define the plastic 

v devdeformation, we separated it into volumetric, F p and deviatoric components F p  that 

include the plastic deformations due to frictional contacts, F p
f  as well as the plastic 

deformations due to dislocations F d
p . Therefore, the deformation gradient for the 

proposed model is now defined as 

f d vF = F F F F . (4.4) e p p p 

The decomposition of the deformation gradient as represented by Eq. (4.4) results in the 

deformation process shown in Figure 4.1. 

Figure 4.1. Multiplicative decomposition of the deformation gradient.  
 

Using the deformation gradient, we may express the velocity gradient in the 

current configuration as 
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−1 f d v
l = F& F = l + l + l + l . (4.5) e p p p 

While the elastic part is naturally defined in the current configuration, the other parts of 

the velocity gradients are naturally defined with respect to intermediate configurations 

that can be mapped to the current configuration.  Velocity gradients in their natural 

configurations will be denoted by L .  Thus, the current configuration of the elastic, 

plastic, and thermal velocity gradients are expressed in terms of their natural 

configurations are 

l = F& F −1 , (4.6)e e e 

ff f f −1 −1 ~ −1
l = F F& F F = F L F , (4.7)p e p p e e p e 

−1 −1 −1d f d d f −1 f d f −1
l = F F F& F F F = F F L F F , (4.8)p e p p p p e e p p p e 

−1 −1 −1 v −1 −1v f d v d f −1 f d d f −1& ˆlp = Fe F p F p Fv
p F p F p F p Fe = Fe F p F p Lp F p F p Fe (4.9) 

In order to apply our previous formulation for the velocity gradient, we next derived 
B1

expressions for the deformation gradients based on physical interpretation of the material 
F 

v 

behavior with respect to each configuration.               

The inelastic volumetric deformation gradient F vp represents the volume change 

due to a decrease in voids (or pores) that arises from inelastic deformation during particle 

consolidation and maps the reference configuration R0 to the intermediate configuration 

R1 as shown in Figure 4.1. The derivation of F vp  is based on the formulation by 

Horstemeyer et al. [2000].  While in the original formulation the void volume change 

represents damage, in a porous model, the void volume fraction is associated with 

densification.  To represent the volume change or density change for constant mass 
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between R0 and R1, we consider the Jacobian of the deformation gradient, J, which can 

also be expressed as the determinant of the volumetric deformation gradient 

vv ˆ ρ 0J = det(F )= = . (4.10)p V0 ρ1 

where v̂  the total volume in the intermediate configuration, V0 is the total volume in the 

reference configuration, ρ0 is the reference density, and ρ1 is the intermediate density. 

The volume in the intermediate state is equal to the volume in the current state due to 

inelastic incompressibility defined in the mapping. The total volume in the current 

configuration is the sum of the volume in the reference configuration and the volume 

change from the reference to the intermediate configuration (void volume), 

v̂ =V0 +Vv . (4.11) 

Therefore the porosity, φ, can naturally be defined as the ratio of void volume (change in 

volume from the reference to intermediate state) to the total volume in the intermediate 

state 

Vvφ = . (4.12)
V0 + Vv 

From a mechanics perspective, the porosity is sometimes expressed in terms of the 

fractional density ρ which gives 

ρ = 1 −φ . (4.13) 

By combining the equations above, it follows that the Jacobian may be expressed 

in terms of the porosity parameter as 

J = det (F vp )= 1 . (4.14) 
1 − φ 
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Assuming that the change in porosity causes only an isotropic volumetric change in the 

material allows the volumetric deformation gradient to be written as   

Fv 
p = 1

1 I . (4.15)
3(1−φ) 

Thus, from Eq. (4.15) the volumetric velocity gradient becomes  

v v 1 φL̂ 
p = F& vp F p 

−

= 
& 

I . (4.16)
3(1−φ) 

Additionally, the velocity gradient can be additively decomposed into 

symmetric, d , and antisymmetric parts, w , in the current configuration as 

l = d + w , (4.17) 

where d is the rate of deformation and w , is plastic spin.  The velocity gradient is defined 

in the intermediate configurations as 

~ f ~ f ~ f d d d v v v
Lp = Dp +Wp , L p = D p + W p  and L̂ 

p = D̂ 
p +Ŵ 

p  . (4.18) 

Therefore, by assuming Ŵ v
p = 0 we obtained the volumetric rate of deformation in the 

intermediate configurations as 

v v φ&ˆ ˆD = L = I  . (4.19) p p 3(1−φ) 

In the current model formulation we also assumed that W p
f = 0 and W d

p = 0  and will 

include the antisymmetric effects for these configuration in future model developments. 

Therefore the plastic rate of deformation due to frictional contacts and sliding at the 

interface may be expressed as 

~ f ~ fD p = L p . (4.20) 

81 



www.manaraa.com

  

                                                                                                              

 

                                                                               

 

 
                                                                                         

 

                                                   

  

                                                   

 

 
 

 

 

                                                                                         

And similarly, the plastic rate of deformation due to dislocations is defined as 

d dD p = L p . (4.21) 

The formulation for the plastic rates of deformation will follow in the section on 

plasticity. Thus, the total rate of deformation in the current configuration becomes  

d f vd = l = l + l + l + l . (4.22)e p p p 

Thus, we can determine the elastic rate of deformation by subtracting the inelastic rates 

from the total rate of deformation which becomes the following in the current 

configuration 

d f vd e = d − d p − d p − d p (4.23) 

Therefore, the elastic part of the constitutive law is written in rate form as 

&⎛ d f φ ⎞
σ& = C : de = C :⎜⎜d −d p −d p − I ⎟⎟ (4.24)e e ⎝ 3(1−φ) ⎠ 

whereσ&  is the rate of the Cauchy stress tensor and Ce is the elastic stiffness matrix. 

&φσ& = λ(1−φ)tr(d e )1 + 2G(1 −φ)d e − σ (4.25)
1−φ 

where λ is the Lamé constant, G is the shear modulus, and σ is the Cauchy stress.  The 

o 
Cauchy stress is convected with the elastic spin W e where σ  is the objective derivative 

of σ  assuming a Jaumann rate where the continuum spin equals the elastic spin 

(W = W e ), 

o 
σ = σ& −W e σ +σW e (4.26) 
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4.3 Thermodynamics 

The constitutive relations must satisfy the laws of thermodynamics.  The 

thermodynamic equations are written in the current configuration and follow the 

formulations by Coleman and Gurtin [1967].  The first law can be written in terms of the 

rate of change in internal energy as 

∂uρ∫ ∂t 
= ∫σ : ddv +∫ ρrdv − ∫q ⋅ n̂da , (4.27) 

B B B ∂B 

with the local form given by 

ρu& = σ : d + ρr − ∇ ⋅ q , (4.28) 

where u& is the rate of change of internal energy, r is radiation or heat supply generated 

within the body, and q is conduction. The second law of thermodynamics states that the 

rate of entropy increase must be greater than or equal to the rate of entropy input to the 

system.  Thus the second law may be written as 

r q ⎞ρs& ≥ ρ −∇⋅⎛⎜ ⎟ (4.29)
θ ⎝θ ⎠ 

We assume Helmholtz free energyψ  to be 

ψ = u −θ ⋅ s  , (4.30) 

where u is internal energy, s is a dissipation function for entropy, θ is absolute 

temperature.  The rate form of Eq. (4.30) becomes 

u& =ψ& +θ& ⋅ s +θ ⋅ s& (4.31) 

Combining the rate form of the Helmholz free energy in Eq. (4.31) with the first law in  

Eq. (4.28) and substituting the results into the second law in Eq. (4.29) results in the 

Clausius-Duhem inequality 
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− ρ(ψ& +θ&s)+σ : d − q gradθ ≥ 0 . (4.32)
θ 

The free energy ψ may be characterized by observable variables, such as temperature and 

strain and by hidden or internal state variables, such as damage, isotropic hardening, and 

kinematic hardening. Because we are interested in the frictional effects during 

deformation, we consider a strain-like parameter ε f , related to the hardening at the 

interface, as an internal state variable for friction. The free energy potential is a function 

of the observable state variables and the internal state variables.  Thus the free energy 

may be written as  

ψ = ψ (E , β , ε , ε ,φ ) (4.33)e ss f 

where E is elastic strain; β is kinematic hardening, ε is isotropic hardening, ε ise ss f 

frictional hardening and φ is damage.  We also assume that entropy, stress, and 

temperature are dependent upon these variables per the principle of equipresence- which 

states that if a variable is present in one constitutive relation it should be present in all the 

other constitutive equations unless proven otherwise. 

Because elasticity is reversible, we are not interested in its history.  However, for 

inelastic behavior, we need to capture the history. To include the history of the 

deformation, we must include the evolution of the internal variables.  Thus, we 

differentiate the free energy equation which gives 

∂ψ ∂ψ ∂ψ ∂ψ ∂ψψ& = : d e + : β& + ⋅ε& ss + ⋅ε& f + ⋅φ& . (4.34)
∂Ee ∂β ∂ε ss ∂ε f ∂φ 

Thus, for an isothermal behavior the Clausius-Duhem inequality becomes 
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∂ψ ∂ψ ∂ψ ∂ψ ∂ψ
− ρ

⎛
⎜ : d + : β& + ⋅ ε& + ⋅ ε& + ⋅φ&

⎞
⎟ +σ : D ≥ 0 (4.35)

⎜ e ss f ⎟∂E ∂β ∂ε ∂ε ∂φ⎝ e ss f ⎠ 

After substituting the relation for the elastic deformation rate Eq. (4.23) and grouping like 

terms, the Clausius-Duhem inequality becomes 

⎛ ∂ψ ⎞ d f v⎜σ − ρ ⎟ : d +σ : (d + d + d )⎜ ⎟ e p p p∂E e⎝ ⎠ 

∂ψ ∂ψ ∂ψ ∂ψ
− ρ : β& − ρ ⋅ε& ss − ρ ⋅ε& f − ρ ⋅φ& ≥ 0  (4.36)

∂β ∂ε ss ∂ε f ∂φ 

Following the work of Coleman and Noll to ensure satisfaction of the entropy 

inequality, we obtain the following relations for stress 

∂ψσ = ρ (4.37)
∂Ee 

and the plastic dissipation becomes 

d f v ∂ψ & ∂ψ ∂ψ ∂ψ &σ : (d p + d p + d p )− ρ : β − ρ ⋅ ε& ss − ρ ⋅ ε& f − ρ ⋅φ ≥ 0 (4.38) 
∂β ∂ε ss ∂ε f ∂φ 

which can physically be interpreted as the inelastic work minus the changes in internal 

energy due to the internal state variables. The equation can also be expressed in terms of 

the deviatoric and volumetric parts, such that 

d f v ∂ψ & ∂ψ ∂ψ ∂ψ &′ ( p + d )− ptr d p − ρ : β − ρ ⋅ ε ss − ρ ε − ρ ⋅φ ≥ 0σ : d p ( )  & ⋅ & f (4.39)
∂β ∂ε ss ∂ε f ∂φ 

where σ =σ′ − pI  and the hydrostatic pressure is p = −1/3Tr(σ ) . 

4.4 Kinetics   

Kinetics is concerned with the forces acting on a body.  While kinematics is not 

size scale dependent, kinetics is size scale dependent because as volume per surface area 
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decreases, dislocation interaction dominates resulting in size independent yield.  Thus the 

size scale parameters should be found in the constitutive equations for the internal or 

“hidden” state variables and not the observable state variable (like strain) since it is 

length scale invariant. Therefore, to capture the material behavior, kinetics will be used to 

determine the evolution of the state variables and plastic strain rate which are related to the 

micromechanics of the material.  Dislocations provide the mechanism of plastic deformation for 

metals. The microstructure which evolves during the deformation is also affected by the strain 

rate and temperature. In order to formulate our constitutive model, we assume a quadratic form of 

the Helmholz free energy that is a convex function, is always positive, and is dependent on the 

elastic strain and state variables which gives  

1 1 2 1 2 1 2 1 2ρψ = E e : C : E e + Cβ β + Css ε ss + C f ε f + Cφφ (4.40)
e2 2 2 2 2 

where C is the elastic modulus and Cβ, Css, Cf, and Cφ are material constants.  By
e 

defining σ , α , κ, f, and Y as the conjugate stresses (or forces) to the strain-like state 

variables it follows that the thermodynamic stress conjugates become 

∂ψσ = ρ = C : Ee  , (4.41)
e∂Ee 

∂ψα = ρ = Cβ β  , (4.42)
∂β 

∂ψκ = ρ = C ε , (4.43)ss ss∂ε ss 

∂ψτ = ρ = C ε , and (4.44) f f f∂ε f 

∂ψY = = Cφφ . (4.45) 
∂φ 
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For the elastic relation in Eq. (4.41), the stress is a function of the deformation and is a 

form of Hooke’s Law. In the above equations the back stress α is the thermodynamic 

force related to kinematic hardening; the isotropic hardening stress κ is the 

thermodynamic force related to isotropic hardening; the friction stress τf is the 

thermodynamic force related to frictional hardening; and the energy release rate Y is the 

thermodynamic force related to the damage variable.  After substituting terms, the plastic 

dissipation in Eq. (4.39) may be rewritten in terms of the stress conjugates as  

d f v & &σ ′ : (d p + d p )− ptr(d p )−α : β −κ ⋅ ε& ss −τ f ⋅ε& f − Y ⋅φ ≥ 0 . (4.46) 

Because the evolution of the state variables and rates of plastic deformation are related to 

d fthe micromechanics of the material we need expressions for κ& ,α& ,τ& f ,φ& , d p , and d p to 

capture this behavior in the material model.  The volumetric rate of plastic deformation 

was defined by Eq. (4.19) and is a function of φ& . 

4.4.1 Isotropic Hardening 

Isotropic hardening parameter is a scalar variable which represents the mechanical 

strength of a material and controls the amount of hardening resulting from statistically 

stored dislocations (SSDs).  The SSDs accumulate by a statistical trapping process during 

plastic slip and are associated with deformation of the lattice.  The accumulation of 

dislocations, which is related to crystallographic slip, is the driving force behind isotropic 

hardening. Therefore, the evolution of the isotropic hardening parameter, which 

represents the lattice deformation or strains due to statistically stored dislocations can be 

written in terms of a hardening minus recovery event [Bammann et al., 1993] as 
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d dp d dp 
2κ Hκ ( )& = θ − [Rdο (θ ) + Rsκ (θ )]κ (4.47) 

where Hκ represents the isotropic hardening modulus, Rdκ represents the dynamic 

recovery constant and Rsκ represents the static recovery constant.  

4.4.2 Kinematic Hardening 

Kinematic (or anisotropic) hardening has been linked to back stress in the body 

and represents the geometrically necessary dislocations (GNDs) created during 

deformation, such as pile-ups at the grain boundaries.  The GNDs preserve lattice 

compatibility and to accomplish the required lattice rotation. The GND densities also 

influence plastic slip through a back stress, which counteracts the local resolved shear 

stress and is related to the heterogeneity of the GND field after removal of the external 

load. The evolution of the kinematic hardening variable is expressed as [Bammann et al., 

1993] 

o 
p d d

p R α θ α α (4.48)+ s ( )]α = α& −W α + αW = H ( )d − [R αe e α θ d d (θ ) 

where Hα is the anisotropic hardening modulus and Rdα describes the dynamic recovery 

and Rsα represents the static recovery constant. 

4.4.3 Damage 

In modeling the compaction of a particulate material, damage is analogous with 

the void volume fraction and is associated with densification.  The total damage can be 

defined in terms of a coalescence variable multiplied with the void volume fraction 

[Horstemeyer et al., 2000]  

φ = c(φ +φ ) , (4.49)particles pores 
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where c is the coalescence variable; φ particles is the volume fraction of voids nucleated 

from inclusion particles; and φ is the volume fraction of voids from pre-existingpores 

pores. Following the work of Horstemeyer et al. [2000] we assumed that the damage 

originating from inclusion particles is represented by a nucleation variable η and the void 

volume v as 

φ particles =ηv (4.50) 

Therefore, the evolution for the damage is 

φ& = c&(φ +φ )+ c(η&v +ηv& +φ& ), (4.51)particles pores pores 

The evolution equation for the void nucleation variable η is given by 

4.52) 

where Q is a temperature dependent material constant.  The material parameters a, b, and 

c relate to the volume fraction of nucleation events arising from local microstresses in the 

material and are determined experimentally.  The stress state dependence in Eq. (4.52) is 

captured by using the stress invariants denoted by I1, J2, and J3. I1 is the first invariant of 

stress as defined in Eq. (2.8). J2 is the second invariant of the deviatoric stress defined by 

1Eq. (2.9). J3 is the third invariant of the deviatoric stress ( J 3 = 3 tr σ 3( )′ ).  Also in Eq.  

(4.52), f  is the volume fraction of the second phase particles, d is a length scale 

parameter related to the most influential microstructural feature on void nucleation, 

typically particle size, and KIC is the bulk fracture toughness. The evolution equation for 

void growth factor v for voids nucleated from second phase particles is given by 
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(4.53)

where V(θ) determines the magnitude of rate dependence on yielding and Y(θ) is the rate-

independent yield stress. The evolution equation for the coalescence variable is given by 

where d0 is the initial particle size, and CCT , Ccoal , and z are model constants.  The 

evolution of the internal state variable for damage is controlled by the void growth rule of 

cocks and Ashby [1980], 

(4.54)

where m is a void growth constant. 

4.4.4 Frictional Hardening/Softening 

The frictional hardening/softening parameter, τf, is a scalar variable which 

represents the mechanical strength of a material and controls the amount of 

hardening/softening resulting from dislocation climb in a region near the interface. The 

lattice deformation or strains due to friction can be written in terms of the dislocation 

density at the interface as [Bammann, 1990] 

5) 

(4.56) 

where b is the magnitude of the Burgers vector.  Therefore the rate form of the frictional 

strain is 
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1 bε& f = 
2 ρ

ρ& f . (4.57) 
f 

Following the work of Kocks [1976] and Mecking [1975], we assume that dislocations 

are trapped and stored as they move through the body and that the dislocation density 

storage (or hardening) occurs at a rate inversely proportional to the mean free path of the 

dislocation and recovers dynamically in proportion to the dislocation density.  

dρ f 1 
= c1 − c2 ρ f  , (4.58) 

dEp λ 

d pwhere E p = ∫
t 

dt is the total plastic deformation. 
0 

From the geometry, the stored dislocations are inversely proportional to the mean free 

path λ and the mean free path is inversely proportional to the square root of the 

dislocation density. 

1λ = (4.59)
ρ f 

Thus, we have the following formulation for the evolution of stored dislocation density 

where the incremental dislocation density per plastic strain is a dislocation storage minus 

recovery event 

dρ f = c ρ − c ρ (4.60)1 f 2 fdEp 

where c1 and c2 are assumed to be constant.  Applying the chain rule we obtain the rate 

form of the stored dislocation density as 

dρ dρ f dE pf (4.61) ρ& f = = = (c1 ρ f − c ρ f ) d pdt dE p dt 2 
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Substituting Eq. (4.61) into Eq. (4.57) we obtain the evolution of the frictional strain in 

terms of the dislocation density, 

1 (4.62)ε& = (c b − c b ρ )f 1 2 f d p2 

Following the work of Friedel [1964] who related the shear yield strength to the 

dislocation density at the initiation of yield, we approximated the relation of the shear 

yield strength (or friction stress) at the contact interface to the dislocation density at the 

interface as 

τ f = mGb ρ f , (4.63) 

where G is the shear modulus and m is a constant. By substituting Eq. (4.56) into Eq. 

(4.63) we can express the frictional stress in terms of the frictional strains as 

τ f = mGε f , (4.64) 

which agrees with our definition of the thermodynamic stress conjugate for friction in Eq. 

(4.44) assuming a quadratic form of the Helmholz free energy, 

∂ψτ = ρ = C ε . (4.65) f f f∂ε f 

By defining the coefficient of friction as the ratio of the frictional stress to the normal 

contact pressure, 

τ fμ = , (4.66)
τ n 

we can express the friction stress in terms of the coefficient of friction as τf = µτn. Thus, 

the frictional strains in terms of the coefficient of friction becomes 

μτ nε f = . (4.67)
mG 
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By differentiating, we obtain the rate form of the frictional hardening parameter in terms 

of the coefficient of friction as 

τ n με& = μ& + τ& (4.68) f mG mG n 
. 

From the MD simulations, we obtained the coefficient of friction as a function of the 

plastic strain in terms of the length scale parameter, V/As (in meters),  

pμ = μoe −cE (4.69) 

where, 

Vμo = 0.208ln + 4.3235  and (4.70)
As 

V c = 0.6088ln +16.473 . (4.71)
As 

Thus, the internal frictional strain in terms of the plastic strain is 

−c E pτ n μ0e
ε f =  . (4.72) 

mG 

Differentiating Eq. (4.72), we obtain the rate form of the frictional strain as 

−c E −c Ep pcτ μ e μ0 e ∂τ nε& = − n 0 + . (4.73) d ppf mG
d 

mG ∂E p 

After grouping like terms and substituting Eq. (4.72) into Eq. (4.73), we obtain the 

following form of the internal frictional strain rate  

kn , (4.74)ε& f = ⎜⎜
⎛ 

ε f − cε f ⎟⎟
⎞ 

d pτ⎝ n ⎠ 

where, 
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∂τ nkn = (4.75)
∂Ep 

can be determined from experimental data or from the MD simulation as shown in Figure 

4.2 in the current study. 

p 

n 
n E

k 
∂ 
∂ 

= τ 

Figure 4.2 MD Simulation results of normal contact pressure versus effective plastic 
strain. 

Eq. (4.74) can be written in terms of hardening minus recovery as 

ε& = (H −R )ε (4.76)f f f f d p 

where, 

knH f =  and Rf = c  . (4.77) 
τ n 

Therefore, by combining Eq. (4.65) and (4.76), we obtain the evolution of the frictional 

hardening parameter, which represents the lattice deformation or strains as 

(4.78)τ& = C (H −R )εf f f f f d p 
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Using the results of the MD simulation, we obtained the hardening modulus Hf and the 

dynamic recovery constant  Rf. A plot of the frictional hardening/softening parameter 

from Eq. (4.78) versus plastic strain (assuming m=0.3) for the MD simulation results is 

given in Figure 4.3. The results show a softening in the 3 nm, 7nm and 10 nm models, 

with essentially the same response for the 7 and 10 nm models.  In comparison, the 14 

nm model shows slight hardening, prior to gradual softening due to friction.  This can be 

attributed to the much more significant dislocation structures noted in the MD 

simulations for the 14 nm model. 

Figure 4.3 Evolution of frictional softening/hardening parameter with length scale 
dependence. 

4.5 Plasticity and Slip 

To describe the deformation of ductile materials, an internal state variable 

plasticity model was used [Bammann et al., 1993].  For the symmetric part of the plastic 

velocity gradient we represented the dissipations of the irreversible mechanisms, such as 
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plastic dissipation, damage, frictional sliding, or microstructural variations [Chaboche, 

1997], using two independent potentials of dissipation.  The first potential Φ dp  is related 

to the plastic strain and hardening process (dynamic recovery). The second potential Φ p
f 

is related to slip at the interface.  The third potential Φ vp is related to damage 

mechanisms.  Thus the pseudo potential Φ p  related to the plastic hardening of particles 

can therefore be decomposed into three parts: 

d f vΦ = Φ +Φ +Φ (4.79) p p p p 

The plastic potential is associated with the Lagrange multipliers λp [Chaboche, 1997]. 

The plastic deformation rate is represented by its volumetric and deviatoric parts as 

follows: 

∂Φ p ⎛ 1 ∂Φ p ∂Φ p ⎞& &D = λ = λ − I + n ⎟ (4.80) p ∂σ p ⎜⎜
⎝ 3 ∂p ∂q ⎟

⎠ 

where λp is the plastic or Lagrange multiplier.  Similarly, the potentials Φ dp  and Φ p
f  are 

respectively associated with the Lagrange multipliers λp and λf [Chaboche, 1997]. Thus, 

the associated flow rule becomes 

f d d∂Φ ∂Φ ∂Φf d v p p 1 pd = d + d + d = λ& 
σ ′ 

n +λ& p ∂ 
n − λ& I (4.81) p p p p s σ ′∂ 3 p ∂p 

Thus we assume that when the interface is in a state of sliding, d p
f ≠ 0 and frictional 

sliding dominates the plastic deformation at the interface.  On the contrary, when the 

interface is in a state of sticking, we assume that d dp dominates the plastic deformation 
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⎡ ⎤3 2 2σ ′ − α − (κ +τ f +σ y (θ ))(1 −φ)⎥ σ ′ − α⎢ 
2 3d 3 ⎢ ⎥ 3 (4.84d = f (θ ) sinhp ⎢ ⎥2 ⎢ V (θ )(1 −φ) ⎥ 2σ ′ − α ′ 

⎢ ⎥ 3⎣ ⎦ 

2f d (σ ,α ,κ ,τ ,σ ,σ ) = 3 σ ′ − α − (κ +τ +σ (v f y v f y 2 3 

  

   

 

               

 

                                          

  

     

and d p
f = 0 . As shown in Figures 4.4a, assuming a von Mises yield criterion, we define 

the rate dependent yield surface for the plastic straining as 

θ ) +σ )(1−φ) (4.82) v

where τ f is the frictional hardening/softening parameter effects the size of the yield 

surface and σ v  is the viscous stress and captures the rate dependency of the yield surface.  

For a ductile material in the case of the elasto-viscoplasticity, the plastic multiplier λp can 

be defined as a scalar function of the viscous stress determined by the distance from the 

stress state to the elastic domain, and is expressed in the form of a hyperbolic sine 

function, 

⎡ f d ⎤
λ& p = f (θ ) sinh ⎢ ⎥ , (4.83) 

⎣(1 −φ )V (θ ) ⎦ 

where f d is the rate independent yield function from Eq. (4.82) that excludes the viscous 

stress ( f d = f v
d +σ v ) . In associative plasticity, we assume that the plastic dissipation 

potential is normal to the yield function.  Therefore, we define the plastic flow rule 

(commonly referred to as the rate of plastic deformation) as [Bammann, 1993] 

) 

The temperature dependent functions V(θ), which determines the magnitude of rate 

dependence on yielding, σy which is the rate-independent yield stress, and f(θ) which 

determines when the rate dependence affects initial yielding are defined as 
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⎛ −C ⎞( ) = C1 exp ⎟ (4.85)V θ ⎜ 2 

⎝ θ ⎠ 

⎛C4 ⎞σ y ( )θ = C3 exp⎜ ⎟ (4.86)
⎝ θ ⎠ 

⎛ −C6 ⎞( ) = 5 exp ⎟ (4.87)f θ C ⎜ 
⎝ θ ⎠ . 

The constants C1, C2, C3, C4, C5 and C6 are determined by uniaxial isothermal 

compression tests with different strain rates and temperatures. 

Figure 4.4 (a) The rate dependent yield surface for plastic deformation due to 
dislocations and damage, and (b) slip surface for plastic deformations due to 
friction. 

The yield surface for slipping at the interface, shown in Figure 4.4(b), is defined 

as 

f f (σ ′,τ ) = σ ′ −τ f (4.88)f 

When the interface is in a state of slipping, the relative tangential traction equals 

the frictional stress (or slip resistance), which is defined as a function of the contact 

pressure and the state of the interface and is the basis of the slip condition given by 
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′ f f (σ′,τ ) = σ −τ ≤ 0f f (4.89) 

The rate of deformation at the interface is assumed to be decomposed into elastic 

(adhering) and plastic (sliding) parts 

f f fd = d e + d p (4.90) 

When the stress state at the interface is such that f f (σ′ ,τ f )< 0 , the interface is elastic and 

f f f ′is adhering and D p = 0 . When the state of stress at the interface is such that (σ ,τ f ) = 0, 

D p
f = 0 . Assuming an isotropic frictional contact, which implies that sliding occurs only 

in the direction opposite to the tangential reaction, the plastic dissipation potential is 

defined as 

′ + C (4.90)Φ p
f = σ 

which results in a non-associative flow rule for friction such that 

f ⎛ ′ ⎞∂Φ p ⎜σ ⎟ ′ 
d f = λ& ⎝ ⎠ = λ& σ (4.91)

p f f ′∂σ ′ σ 

For rate independent plasticity, we have 

∂f f ∂f f 

& ff (σ ′,τ )=σ& ′ : +τ& = 0 (4.92)f ∂σ ′ f ∂τ f 

Therefore, after substituting Eq. (4.78) for τ& f and the following equations for the partial 

derivatives into Eq. (4.92) 

∂f f σ ′ ∂f f 

=  and = −1, (4.93)
′ ′ ∂τ f∂σ σ 
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we obtained the following expression, 

σ ′ 
= 0  . (4.94)σ& ′ : − C f (H f − R f )ε f d pσ ′ 

Next, we decompose the total plastic rate of deformation into volumetric, frictional, and 

deviatoric parts which gives us 

d σ ′ d d d f(C : d ): − C (H − R )ε − C (H − R )εf f f f f f f fp p pe σ ′ 

d vp = 0 (4.95)− C f (H − R f )εf f 

By combining Eq.(4.91) and Eq.(4.95) and solving for the friction multiplier, we obtain 

⎡ C ⎤ v σ ′ d d& e (4.96)λ f = ⎢ − 1⎥ − d p ⋅p
⎢(C f (H f − R f )ε f ) ⎥ σ ′ ⎣ ⎦ 

Therefore, the frictional rate of deformation due to sliding becomes 

Ce σ ′ vd d − d p (4.97)d p
f = ⎢

⎡ 
−1⎥

⎤ 
⋅p σ ′ ⎢(C (H − R )ε ) ⎥⎣ f f f f ⎦ 

As shown in Figure 4.5, because friction is primarily a surface affect, in the 

micromechanical FEA model the particles are divided into two regions:  a surface region 

and an interior region.  For analysis in the surface region we introduce a switching 

parameter χ for the slipping condition. When the condition at the interface is slipping, 

χ=1 and f f (σ′,τ f ) = 0 . When the condition at the interface is adhering, χ=0 

and f f (σ′ ,τ f )< 0. Therefore, the total plastic rate of deformation in the surface region is 

represented by the following relations 

surface d f vd = d + χ d + d (4.98)p p p p 

or in expanded form as                                                                                                         
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⎡ ⎤3 2 2σ ′− α − (κ +τ f +σ y (θ ))(1−φ)⎥ σ ′ − α⎢ 
3 ⎥ 3 +

φ& I  (4.101)int 3 ⎢ 2 
d p = f (θ ) sinh⎢ ⎥2 ⎢ V (θ )(1−φ) ⎥ 3(1−φ)2σ ′ − α ′ 

⎢ ⎥ 3⎣ ⎦ 

  

   

                              

⎡ ⎤3 2 2σ ′− α −(κ ++τ f +σ y (θ))(1−φ)⎥ σ ′− α⎢ 
2 3 ⎥ 3surface 3 ⎢d p = f (θ) sinh +⎢ ⎥2 ⎢ V (θ)(1−φ) ⎥ 2σ ′− α′ 

⎢ ⎥ 3⎣ ⎦ 

⎛⎡ Ce 
⎤ ⎞ &σ ′ v φ⎜+ χ ⎢ −1⎥ d dp ⋅ − d p 

⎟+ I  (4.99)
⎜⎢(C f (H f − R f )ε f ) ⎥ σ ′ ⎟ 3(1−φ)⎝⎣ ⎦ ⎠ 

  

 

 

 

 

 
                                                                                               

Therefore, when the condition at the interface is slipping (lying outside the slip surface) 

or χ=1, Eq. (4.99) becomes 

⎡ C ⎤ σ ′ −αsurface e d d (4.100)⋅p ⎢ ⎥ pd = (C (H − R )ε ) σ ′ −α⎢ f f f ⎥⎦⎣ f 

and the volumetric effects vanish from the expression.  However, when the interface is 

adhering (lying within the slip surface) or χ=0, Eq. (4.99)  

and the frictional rate of deformations due to slipping vanish.  

For plastic deformation behavior within the interior region, the frictional rate of 

plastic deformation is equal to zero ( d p
f = 0 ). The total plastic rate of deformation in the 

interior region is defined as 

int d vd = d + d (4.102)p p p 

or in expanded form as 
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⎡ ⎤3 2 2σ ′− α −(κ +σ y (θ))(1−φ)⎥⎢ σ ′− α2 3int 3 ⎢ ⎥ 3 φ& (4.103)d = f (θ) sinh + Ip ⎢ ⎥2 ⎢ V (θ)(1−φ) ⎥ 3(1−φ)2σ ′− α′ 
⎢ ⎥ 3⎣ ⎦ 
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Figure 4.5 Micromechanical finite element model setup with particles defined with a 
surface region for capturing the frictional effects in the model and an interior 
region for plastic deformations. 

4.6 Modified Drucker-Prager/ Cap Plasticity Model 

We considered the modified Drucker-Prager cap plasticity model for the 

deformation behavior of the granular materials during compaction.  Using the cap 

plasticity model we can include the volume effects during consolidation of the particulate 

materials, as well as account for frictional effects and elasto-plastic deformation within a 

macroscopic continuum.  This double surface plasticity model consists of an elastic 

region in stress space, bounded by a shear yield surface, Fs, in the low pressure region 

which represents internal friction, and a cap yield surface, Fc, in the high pressure region 
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which represents compression. To avoid numerical instabilities, a smoothing function Ft 

was introduced [Hammi et al., 2007] to replace the corner intersection between the two 

surfaces of the cap model. The yield surfaces are plotted in the q-p plane. The modified 

Drucker-Prager failure and cap surfaces of the smooth cap model for compaction at low 

densities (ρ <ρc) are shown in Figure 4.6. 

φf 

µ = tanφf

 q 

fda ppd ϕtan)( −+ 

[ ]fda ppdR ϕtan)(0 −+ 

  

 

 

 

 
 

                                                                                    

                                                

 

 

Figure 4.6 Evolution of the failure and cap yield surfaces of the Modified 
Drucker/Prager Cap Model. 

The general equation for the shear yield surface of the model is 

F = q − p tanϕ − d = 0 (4.104)s f 0 

where d0 is the material cohesion strength, φf  is the material internal friction angle, q is 

the deviatoric stress, and p is the hydrostatic pressure.  The shear yield surface is further 

defined to include the effects of kinematic hardening α and isotropic hardening κ and to 

include the transitional smoothing function Ft such that 

Fs = σ ′ −α −κ −d − p tanϕ + F ( p) = 0  , (4.105)0 f t 
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where the pressure dependent transition function ft is defined by: 

H ( p − p )
F ( p) = d [p − p ]2 tanϕ , (4.106) t d f2( pa − pd ) 

where the cap hardening variable, pa, is an evolution parameter that represents the 

volumetric plastic strain driven hardening/softening,  pd is a material parameter, and H (⋅) 

is the Heaviside function 

⎧1 if p ≥ pdH ( p − pd ) = . (4.107)⎨ if p < pd0⎩ 

The cap yield surface has an elliptical shape and is represented by the following relation 

2 1 2Fc = σ ′ −α + 
R 2 [p − p ] − d − ( p − p ) tanϕ = 0 (4.108)a a d f 

where R is a material parameter called the cap eccentricity that controls the shape of the 

cap. The cap yield surface hardens or softens as a function of the volumetric plastic 

strain. 

When the density reaches a critical value ρc, which is the density saturation value 

obtained from compressibility curves, the cap surface is replaced by a von Mises yield 

surface (Figure 4.7). Therefore, the yield surface for p > pa becomes pressure 

independent and is given by 

Fp = σ ′ −α − Fs ( pa ) = 0 (4.109) 

The shear failure envelope remains identical at high pressure to describe shear crack 

during compaction and ejection, which is critical due to the granular nature of green 

compacts.  
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Figure 4.7 Representation of the double yield surface for dense powder aggregate. 

As shown in Figure 4.8, in the current PM research studies the interparticle 

friction is determined based on experiments and is calculated as a function of density,   

⎧c − c ρ if ρ ≤ ρ1 2 d dtanϕ f = ⎨ (4.110)
c − c ρ if ρ > ρ⎩ 1 2 d 

Figure 4.8 Experimental results for interparticle friction angle versus green density for 
FC-0205 and 205Q steel materials. 
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By determining the interparticle friction based on evolution equations of the 

internal state variables, we can obtain a more accurate prediction of the plastic behavior 

of metal powders during compaction.  For the aggregate, the interparticle friction defines 

the slope of the failure envelope and can be related to the coefficient of friction as 

μ = tanϕ f . (4.111) 

The rate form of the friction angle can be written as 

ϕ& f = 1
2 μ& (4.112)

1 + μ 

By substituting Eq. (3.29), the evolution equation for the coefficient of friction derived 

from the MD simulations, we obtain the evolution for the friction angle of the aggregate 

in terms of the plastic rate of deformation as 

− cμ (4.113) ϕ& = D pf 21 + μ 

−cε pwhere μ = μ0e . Material parameters µ0 and c are defined by Eq. (4.70) and Eq. 

(4.71), respectively, and capture the length scale effect of friction and can be determined 

from MD simulations or experiments. 

4.7 Summary of Chapter 4 

A multiscale friction framework based upon internal state variable theory has 

been developed. The kinematics was modified by including a frictional component in the 

multiplicative decomposition of the deformation gradient in order to account for the 

frictional surface effects due to sliding.  The evolution of the frictional hardening variable 

was formulated as a hardening minus recovery event in terms of frictional strains within 

the material.  The parameters for the frictional strains were obtained from MD nanoscale 
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studies. For the micromechanical formulation, the particles were divided into two 

regions:  a surface region and an interior region for including deformations due to sliding 

at the interface, in addition to frictional/softening effects within the particles due to 

friction. For the macroscale continuum model, the friction is accounted for in an 

evolution equation for the friction angle of the powder aggregate. The constitutive model 

was coupled with the Bammann-Chiesa-Johnson (BCJ) rate-independent plasticity model 

to capture the deformation behavior due to dislocations at the interface.  
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CHAPTER V 

CONCLUSIONS AND FUTURE WORK  

5.1 Conclusions 

Using contact laws and an adhesion law for friction, we developed a friction 

model that captures the atomic scale effects at the interface of the contacting surfaces 

from the MD simulations.  The resulting interface friction model formulation combined 

the influence of particle size using the volume-per-surface-area parameter and was 

validated with experimental results and the model prediction was extended to micron-

sized particles.  We developed a multiscale friction model based on internal state variable 

theory by incorporating the microstructural features, along with the volume per surface 

area length scale parameter from the nanoscale MD simulations. The kinematics was 

modified by including a frictional component in the multiplicative decomposition of the 

deformation gradient in order to account for the frictional surface effects due to sliding, 

as well as frictional hardening/softening within the particles.  The evolution of the 

frictional hardening variable was formulated as a hardening minus recovery event in 

terms of frictional strains within the material. The constitutive model was coupled with 

the Bammann-Chiesa-Johnson (BCJ) rate-dependent plasticity model to capture the 

deformation behavior of the particles. 
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5.2 Future Work 

5.2.1 Friction Model Implementation 

Currently, an implicit time-integration procedure for the proposed friction model 

is being formulated. Upon completion, the friction model will be implemented into the 

existing ISV BCJ user material model for ABAQUS.  For the powder aggregate, the 

frictional evolution equation should be implemented into the existing Drucker-Prager Cap 

Plasticity user material model for ABAQUS. 

5.2.2 Friction Model Correlation and Validation with Nickel   

After the material model is implemented, experiments need to be performed to 

obtain the model frictional hardening and recovery parameters.  The multiscale friction 

model should be tested in a two-particle finite element model to correlate the model 

parameters obtained from the MD simulations.  The model should then be applied to a 

multi-particle finite element model, followed by an actual continuum model (ie. powder 

metallurgy part) to test the range of the model prediction.. 

5.2.3  Extend MD Simulation Study to Include Other Materials  

In the current study, nickel was the only material evaluated using the MD 

Simulations.  Future work should involve performing the MD simulations for other 

metals, like copper, and comparing the results with those obtained for nickel.   

5.2.4  Energy Dissipation 

We want to understand the way in which sliding kinetic energy is dissipated at the 

surface. Therefore, future MD studies at different temperatures to observe thermal 
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effects on dislocation structures should be considered.  We want to quantify the energy 

dissipation arising from sliding friction versus the energy dissipation from plastic 

deformation (ie. dislocations) at the contact to obtain a better understanding of the 

underlying mechanisms of friction. 
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SUMMARY OF MODEL CONFIGURATIONS 
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SUMMARY OF MODEL CONFIGURATION 

Particle Size 
(nm) 

Contact Angle 
(degrees) 

Strain rate 
(/s) 

Total Strain 
(%) 

Temp (K) 

3.52 60 5.00E8 20 300 
3.52 30 4.37E8 18 300 
3.52 0 4.17E8 17 300 
7.04 60 2.50E8 20 300 
7.04 30 2.19E8 18 300 
7.04 0 2.08E8 17 300 
10.0 60 1.76E8 20 300 
10.0 30 1.54E8 18 300 
10.0 0 1.47E8 17 300 
14.0 60 1.25E8 20 300 
14.0 30 1.09E8 17 300 
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 APPENDIX B 

MD SIMULATION SAMPLE INPUT FILE 

121 



www.manaraa.com

  

 

 

 

 

 

 

 

 

 

 

 

 

 

# DESCRIPTION: Compaction of 2 Ni sphere (w/ 2 half spheres) 7.04 nm diameter
# using ramp velocity, strain rate 2.185E8, temp 300K, 30 deg contact angle
#-----------------------------------------------------------------------# 

units real 
potential eam 1 nialhjea
timestep 0.005 
lattice fcc 3.52 
neighbor 0.3 1 

# free in all directions 
periodicity 0 0 0 

# outputs
thermo 10 
#restart 1000 restart_tensile 

# box 
create box -11 21 -20 37.32 -11 11 

# create 100 lattice 
orient x 1 0 0 
orient y 0 1 0
orient z 0 0 1 
origin 0.0 0.0 0.0 

select region -11 21 -20 37.32 -11 11 
define cutout 0 sphere  0.0 0.0 0.0 10.0 
create atoms 1 

# create 100 lattice 
orient x 1 0 0 
orient y 0 1 0
orient z 0 0 1 
origin 10.0 17.32 0.0 

select region -11 21 -20 37.32 -11 11 
define cutout 0 sphere  10.0 17.32 0.0 10.0 
create atoms 2 

# create 100 lattice 
orient x 1 0 0 
orient y 0 1 0
orient z 0 0 1 
origin 10.0 37.32 0.0 

select region -11 21 -20 37.32 -11 11 
define cutout 0 sphere  10.0 37.32 0.0 10.0 
create atoms 3 

# create 100 lattice 
orient x 1 0 0 
orient y 0 1 0
orient z 0 0 1 
origin 0 -20.0 0.0 

select region -11 21 -20 37.32 -11 11 
define cutout 0 sphere  0 -20.0 0.0 10.0 
create atoms 4 
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# create types for lower (5) and upper (6) fixed planes
select region inf inf -20 -19 inf inf 
create types 5 
select region inf inf 36 37.32 inf inf 
create types 6 

# initialize thermal velocities on interior atoms 
select type
create vels 

1 
thermal 600.0 1 

select type
create vels 

2 
thermal 600.0 1 

select type
create vels 

3 
thermal 600.0 1 

select type
create vels 

4 
thermal 600.0 1 

# initially, all lower and upper surfaces are fixed
select type 5 
create fixes xyz 0 0 0
select type 6 
create fixes xyz 0 0 0 

# apply temperature controls on active atoms
temp type 1 
temp control hoover 300.0 10.0 
temp type 2 
temp control hoover 300.0 10.0 
temp type 3 
temp control hoover 300.0 10.0 
temp type 4 
temp control hoover 300.0 10.0 

# run to equilibrate temperature (10 ps)
# set up output
snapshot 100 Ni7_30b_parts_eq
snap column 7 
snap thresh centro 2.0 
diagnostic tensile_meam 50 Ni7_30b_eq.dat 4 2 5 14.70 010 
run 2000 
reset timestep 0 

# minimize potential energy
#relax 100 
#reset timestep 0 

# initial Vy of fixed atoms-add ramped velocity to get strain rate of 2.185E8/s
check vels 0 
select type 5 
create vels ramp vy 0.00625 0.00625 y -20 -19
select type 6 
create vels ramp vy -0.00625 -0.00625 y 36 37.32 

#add Vy ramp to active atoms
select type 4
create vels ramp vy 0.00625 0.004 y -19 -10
select type 1
create vels ramp vy 0.004 0 y -10 8.66
select type 2
create vels ramp vy 0 -0.004 y 8.66 27.32 
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select type3
create vels ramp vy -0.004 -0.00625 y 27.32 36 

# make sure ramped velocity is taken into account in temperature
temp adjust ramp vy 0.00625 -0.00625 y -20 37.32 

# set up output
snapshot 100 Ni7_30b_parts
#1- multiple parts, 0- only one part
snap types 1
snap column 7 
snap thresh centro 2.0 

#Compute stresses on center particles (avg) & on each part
diagnostic tensile_meam 50 Ni7_30b.dat 4 2 5 14.70 010 
# create force and velocity data file
#write meamstat 1000 meamstat7nm60b 

# run up to approx. 18.0% strain
run 180000 
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